

Certificate of Analysis

Page 1 of 17

Analytical Report: AAR36388

Eurofins Sample Number: NJ21AA6569-1

Version: 1

WILO AUSTRALIA PTY LTD 2/29 ALEXANDRA PLACE QLD 4172 QLD, AU Client Account Number: A00493572L0P Eurofins Quote Number: XC8UPH19011202

Eurofins Sample Number NJ21AA6569-1

Original Received Date: 14-May-2021

Description: Vertical Multistage Centrifugal Pump; Helix V1602-1 + Pump

Housing for V1002-1 Product Range:

HELIX V 2**-1/..., HELIX V 4**-1/..., HELIX V 6**-1/..., HELIX

V 10**-1/..., HELIX V 16**-1/...

HELIX VE 2**-1/..., HELIX VE 4**-1/..., HELIX VE 6**-1/...,

HELIX VE 10**-1/..., HELIX VE 16**-1/...

HELIX Excel 2**-1/..., HELIX Excel 4**-1/..., HELIX Excel 6**-1/..., HELIX Excel 10**-1/..., HELIX Excel 16**-1/...

Containers Submitted: 4 Unit(s)

Analysis

AS/NZS 4020:2018 Compliance Testing

Refer to Attachment # 1

Method: AS/NZS 4020, Appendix A and in-house method TMP 191100 & TMP 191101

Analysis Date: 27-Jul-2021

Supplemental Information

Samples were tested as received. Specifications (if) reported are as provided by the client.

Accredited for compliance with ISO/IEC 17025:2017- Testing. NATA Accreditation Number 15773.

Contracted Company: Eurofins ams Laboratories (Sydney)

8, Rachael Close, Silverwater, NSW 2128 Australia SampleReceiptAMS@eurofins.com

TGA Licence No: MI-15112007-LI-002191-11 APVMA Licence No: 6139

Questions about this report should be directed to your project manager or the general email listed above.

Certificate of Analysis

Page 2 of 17

Analytical Report: AAR36388

Eurofins Sample Number: NJ21AA6569-1

Version: 1

1. <u>SAMPLE INFORMATION:</u>

Methodology: AS/NZS 4020, Appendix A and in-house method TMP-191100 & TMP-191101

Cross Reference No.:	Eurofins ams Certificate of Analysis Report No.: NJ19AA5851-1 (Tests completed on 31/10/2019)
Interim Reporting:	Not Applicable
Batch No./ Manufacturing Date:	Information not Provided
Product Manufacturer:	Wilo SE Wilopark 1, 44263 Dortmund, Germany
Sampling Organisation:	Wilo Australia Pty. Ltd.
General Composition:	Refer to Section 9
Product Use:	In-Line
Temperature Range:	(-15 - 90)°C
Previous Testing:	Not Applicable
Sample selection for tests:	As provided by the Submitting Organisation

Sample storage conditions:	Prepared and controlled as per AS/NZS 4020, Appendix A
Extracts:	Prepared as per AS/NZS 4020, Appendices C, D, F, G & H
Testing procedure:	Testing is based on the recommended composite exposure of 1 x system (system = 'in-the-product' exposure of 1 x Helix V1602-1 (~3.25L) + 'total immersion' exposure of 1 x Pump Housing (Helix V1002-1) / 10L test water, with the extracts combined to make up 13.25L) with a scaling factor of 0.1 (1/10) applied at (65 ± 2)°C to cover a cold and hot water application up to ~65°C. NOTE: FINAL VOLUME OF SYSTEM=32.5L. Test for Growth of Aquatic Micro-organisms, Appendix E, is cross-referenced to Eurofins ams Certificate of Analysis Report No.: NJ19AA5851-1 with non-metallic wetted components (Tests completed on 31/10/2019). Refer to Section 9 for product details.
Volume retention:	~3.25L

2. **SUMMARY OF RESULTS**:

APPENDIX	RESULTS		
C - TASTE (CLAUSE 6.2)	PASSED at composite exposure of 1 x system (system = 'in-the-product' exposure of 1 x Helix V1602-1 (~3.25L) + 'total immersion' exposure of 1 x Pump Housing (Helix V1002-1) / 10L test water, with the extracts combined to make up 13.25L) with a scaling factor of 0.1 (1/10) applied		
D – APPEARANCE (COLOUR AND TURBIDITY) (CLAUSE 6.3)	PASSED at composite exposure of 1 x system (system = 'in-the-product' exposure of 1 x Helix V1602-1 (~3.25L) + 'total immersion' exposure of 1 x Pump Housing (Helix V1002-1) / 10L test water, with the extracts combined to make up 13.25L) with a scaling factor of 0.1 (1/10) applied		
D – APPEARANCE (ORGANIC COMPOUNDS) (CLAUSE 6.8)	PASSED at composite exposure of 1 x system (system = 'in-the-product' exposure of 1 x Helix V1602-1 (~3.25L) + 'total immersion' exposure of 1 x Pump Housing (Helix V1002-1) / 10L test water, with the extracts combined to make up 13.25L) with a scaling factor of 0.1 (1/10) applied		
E - GROWTH OF AQUATIC MICRO- ORGANISMS (CLAUSE 6.4)	PASSED at 'total immersion' exposure Cross referenced to Eurofins ams Certificate of Analysis Report No.: NJ19AA5851-1 (Tests completed on 31/10/2019)		
F - CYTOTOXIC ACTIVITY (CLAUSE 6.5)	PASSED at composite exposure of 1 x system (system = 'in-the-product' exposure of 1 x Helix V1602-1 (~3.25L) + 'total immersion' exposure of 1 x Pump Housing (Helix V1002-1) / 10L test water, with the extracts combined to make up 13.25L) with a scaling factor of 0.1 (1/10) applied		
G - MUTAGENIC ACTIVITY (CLAUSE 6.6)	PASSED at composite exposure of 1 x system (system = 'in-the-product' exposure of 1 x Helix V1602-1 (~3.25L) + 'total immersion' exposure of 1 x Pump Housing (Helix V1002-1) / 10L test water, with the extracts combined to make up 13.25L) with a scaling factor of 0.1 (1/10) applied		
H - METALS (CLAUSE 6.7)	PASSED at composite exposure of 1 x system (system = 'in-the-product' exposure of 1 x Helix V1602-1 (~3.25L) + 'total immersion' exposure of 1 x Pump Housing (Helix V1002-1) / 10L test water, with the extracts combined to make up 13.25L) with a scaling factor of 0.1 (1/10) applied		

Based on completion and evaluation of all tests on 12/10/2021, the product, Vertical Multistage Centrifugal Pump; Helix V1602-1 + Pump Housing for V1002-1; <u>fully complied</u> with the test requirements of AS/NZS 4020:2018 to cover a cold and hot water application up to $^{\circ}65^{\circ}$ C, at the recommended composite exposure of 1 x system (system = 'in-the-product' exposure of 1 x Helix V1602-1 ($^{\circ}3.25$ L) + 'total immersion' exposure of 1 x Pump Housing (Helix V1002-1) / 10L test water, with the extracts combined to make up 13.25L) with a scaling factor of 0.1 (1/10) applied at (65 ± 2) $^{\circ}$ C. NOTE: FINAL VOLUME OF SYSTEM= 32.5L.

Testing although determined by the relevant product Standard, is generally recognised for up to 5 years by the certifying body, providing the testing procedures remain the same, and the background information on all wetted parts and the product are adequately documented. Also, the results stated in the report relate to the samples of the product submitted for testing. Any changes in the material formulation and supplier/manufacturer of all wetted items, the process of manufacture, the method of application, or the surface area-to-volume ratio in the end-use, could affect the suitability of the product for use in contact with drinking water, and re-testing may be required before this actual time frame, governed by the completion and evaluation date.

3. TASTE:

Methodology: AS/NZS 4020, *Appendix C* and in-house method TMP-191130.

Exposure: composite; 1 x system (system = 'in-the-product' exposure of 1 x Helix V1602-1 (\sim 3.25L) + 'total immersion' exposure of 1 x Pump Housing (Helix V1002-1) / 10L test water, with the extracts combined to make up 13.25L). NOTE: FINAL VOLUME OF SYSTEM= 32.5L

Extraction temperature: $(65 \pm 2)^{\circ}$ C Scaling factor: 0.1 (1/10) Number of Panellists: 5

No. of samples for Chlorine-free extract: 1 x system

No. of samples for Chlorinated extract: 1 x system

Description	Extract	Test Water	Taste	Taste Description	Test Dilution
			(+ / –)	(No. of tasters)	*(Taste
					intensity)
Test Blank	First 24h	Chlorine-free	NA	NA	NA
	Final 9-day	Chlorine-free	_	-	_
Sample	First 24h	Chlorine-free	NA	NA	NA
	Final 9-day	Chlorine-free	_	_	_
Test Blank	First 24h	Chlorinated	NA	NA	NA
	Final 9-day	Chlorinated	_	-	_
Sample	First 24h	Chlorinated	NA	NA	NA
	Final 9-day	Chlorinated	_	_	_

+ Taste detected - No taste detected NA Not applicable

AS/NZS 4020 test requirement: Minimum of 4 tasters with no discernible taste at the first 1/2 dilution.

Figure in brackets is the number of panellists detecting a taste at this dilution. Note:

- 1. Tasters are given a 14-point scale to describe its intensity, with minimum of 1 as extremely weak, and maximum of >14 as extremely strong. An average of all tasters represents taste intensity.
- 2. First extract becomes final extract.

EVALUATION:

On the basis of these results the samples of this product referred to in this report <u>have complied</u> with the test requirements of AS/NZS 4020:2018, Taste; *Appendix C*.

4.A. APPEARANCE: COLOUR AND TURBIDITY

Methodology: AS/NZS 4020, *Appendix D* and in-house methods TMP-191140 and TMP-191106.

Exposure: composite; 1 x system (system = 'in-the-product' exposure of 1 x Helix V1602-1 (~3.25L) + 'total immersion' exposure of 1 x Pump Housing (Helix V1002-1) / 10L test water, with the extracts

combined to make up 13.25L). NOTE: FINAL VOLUME OF SYSTEM= 32.5L

Extraction temperature: $(65 \pm 2)^{\circ}$ C **Scaling factor:** 0.1 (1/10)

No. of samples tested: 1 x system

	a) TRUE COLOUR: Hazen Units (HU)		b) TURBIDITY: Nephelometric Turbidity Units (NTU)	
	First 24h	Final 9-day	First 24h	Final 9-day
Sample Extract pH (24h) = 5.77	<2	NA	0.14	NA
Test Blank pH (24h) = 5.24	<2	NA	0.14	NA
FINAL RESULT	<2	NA	<0.01	NA
AS/NZS 4020 Test sample requirements	≤	55	≤0.	.5

< = less than \leq = less than or equal to NA Not applicable First extract becomes final extract

For test a), test extractions were performed by Eurofins | ams. The test extracts were subsequently subcontracted to Eurofins | Environment Testing for assessment (NATA Accreditation No. 1261), Report No. 813982-W. In-house Method based on APHA 2120 B.

EVALUATION:

On the basis of these results the samples of this product referred to in this report <u>have complied</u> with the test requirements of AS/NZS 4020:2018, Appearance (Colour & Turbidity); *Appendix D*.

4.B. APPEARANCE: ORGANIC COMPOUNDS

Methodology: AS/NZS 4020, *Appendix D* and in-house methods TMP-191140 and TMP-191106.

Refer to Section 4.A for testing conditions (Exposure, Extraction temperature, Scaling factor & No. of

Samples tested) Extract: 9-day

Organic Compound	Drinking Water	Limit of	Test	Sample	FINAL
	Guideline Maximum	Reporting	Blank	Extract	RESULT
	Allowable	mg/L	mg/L	mg/L	mg/L (ppm)
	Concentration	(ppm)	(ppm)	(ppm)	
	mg/L				
	(ppm)				
¹ Benzene	0.001*	0.001	<0.001	<0.001	<0.001
¹ Bromodichloromethane	0.06**	0.001	< 0.001	< 0.001	<0.001
¹ Carbon tetrachloride	0.003*	0.001	<0.001	< 0.001	<0.001
¹ Chlorobenzene	0.3*	0.00001	<0.00001	<0.00001	<0.00001
¹ 1,2-dichlorobenzene	1.5*	0.001	< 0.001	< 0.001	<0.001
¹ 1,4-dichlorobenzene	0.04*	0.00001	0.00001	<0.00001	<0.00001
¹ 1,2-dichloroethane	0.003*	0.00001	<0.00001	<0.00001	<0.00001
¹ 1,1-dichloroethene	0.03*	0.001	<0.001	<0.001	<0.001
¹ Cis 1,2-dichloroethene	0.06*	0.00001	0.00001	<0.00001	<0.00001
¹ Trans 1,2-dichloroethene	0.06*	0.001	<0.001	<0.001	<0.001
¹ Dibromochloromethane	0.15**	0.001	<0.001	<0.001	<0.001
¹ Dichloromethane	0.004*	0.00002	<0.00002	<0.00002	<0.00002
(methylene chloride)					
¹ 1,4-dioxane	0.05**	0.00005	<0.00005	<0.00005	<0.00005
¹ Epichlorohydrin	0.0005*	0.0004	<0.0004	<0.0004	<0.0004
¹ Ethylbenzene	0.3*	0.001	< 0.001	< 0.001	<0.001
¹ Hexachlorobutadiene	0.0007*	0.0005	<0.0005	<0.0005	<0.0005
² N-Nitrosodimethylamine	0.0001*	0.00001	<0.00001	<0.00001	<0.00001
(NDMA)					
¹ Plasticisers di(2-	0.009**	0.0005	<0.0005	<0.0005	<0.0005
ethylhexyl) (Phthalate)					
¹ Benzo-(a)-pyrene (PAHs)	0.00001*	0.00001	<0.00001	<0.00001	<0.00001
¹ Styrene (Vinylbenzene)	0.03*	0.001	<0.001	<0.001	<0.001
¹ Tetrachloroethene	0.05*	0.00002	<0.00002	<0.00002	<0.00002
¹ Toluene	0.8*	0.001	<0.001	<0.001	<0.001
¹ Trichlorobenzenes	0.03*	0.0005	<0.0005	<0.0005	<0.0005
¹ Trichloroethene	0.02**	0.00001	0.00002	<0.00001	<0.00001
¹ Vinyl chloride	0.0003*	0.00005	<0.00005	<0.00005	<0.00005
¹ Xylene	0.6*	0.003	<0.003	<0.003	<0.003

^{*}Australian Drinking Water Guideline **NZ Drinking Water Guideline

EVALUATION:

On the basis of these results the samples of this product referred to in this report <u>have complied</u> with the test requirements of AS/NZS 4020:2018, Appearance (Organic Compounds); Appendix D.

¹ Test extractions were performed by Eurofins | ams. The test extracts were subsequently subcontracted to Eurofins | Environment Testing, NATA Accreditation No. 1261, Report No. 815797-W. In-house Method based on USEPA 522, 8260D & 8270E.

¹ (Epichlorohydrin) Test extractions were performed by Eurofins | ams. The test extracts were subsequently subcontracted to Eurofins | Eaton, ANSI-ASQ National Accreditation Board/ANAB Accreditation No. AT 1807, Report No. 951880. In-house Method based on USEPA 524.2 Modified.

²Test extractions were performed by Eurofins |ams. The test extracts were subsequently subcontracted to Sydney Water, NATA Accreditation No. 63, Report No. 249485. In-house Method based on USEPA 521.

5. **GROWTH OF AQUATIC MICRO-ORGANISMS:**

Methodology: AS/NZS 4020, *Appendix E* and in-house method TMP-191150.

Incubation temperature: $(30 \pm 1)^{\circ}C$

Exposure: 'total immersion'

No. of Samples: 1 x pump components

Component Name	Testing Exposure	Inoculum (mL)	* MEAN DISSOLVED OXYGEN DIFFERENCE (MDOD) in mg/L
i) Ring Joint	1/1L	100	0.01
ii) Mechanical Seal	1/1L	100	<0.01
iii) EPDM O-ring	2 / 1L	100	0.25
Negative Reference Control (glass plate)	~15,000mm²/1L	100	<0.01
Positive Reference Control (paraffin waxed glass plate)	~15,000mm²/1L	100	10.68
Test Blank	Blank / 1L	100	7.74 in mg/L as mean dissolved oxygen

NA = Not applicable

EVALUATION:

On the basis of these results the samples of this product referred to in this report <u>have complied</u> with the test requirements of AS/NZS 4020:2018, , Growth of Aquatic Micro-organisms; *Appendix E*.

NOTE: Results relate to Eurofins | ams LIMS Reference No. NJ19AA5851-1 (Tests completed on 31/10/2019)

^{*} Difference from test blank and represents mean of five readings (weeks 5, 5 ½, 6, 6 ½ & 7) AS/NZS 4020 test sample requirements: Less than or equal to 2.4 for MDOD

6. CYTOTOXIC ACTIVITY:

Methodology: AS/NZS 4020, *Appendix F* and in-house method TMP-191160.

Exposure: composite; 1 x system (system = 'in-the-product' exposure of 1 x Helix V1602-1 ($^{\circ}$ 3.25L) + 'total immersion' exposure of 1 x Pump Housing (Helix V1002-1) / 10L test water, with the extracts combined to make up 13.25L). NOTE: FINAL VOLUME OF SYSTEM= 32.5L

Extraction temperature: $(65 \pm 2)^{\circ}$ C **Scaling factor:** 0.1 (1/10)

Extracts: 24h, 48h & 72h

No. of samples tested: 1 x system

The test sample extracts from the product, as well as the test blank (test water) were used to prepare a nutrient growth medium, subsequently utilised to grow a monkey kidney cell line (VERO ATCC CCL 81).

Microscopic Examination	Test Sample Extract (24h, 48h and 72h)	Test Blank (24h, 48h and 72h)
Cell Morphology:	Satisfactory	Satisfactory
Monolayer: Confluence/Healthy Growth as ~%	100%	100%

Cytotoxicity was detected with Zinc Sulphate, used as a positive control and analysed at 0.4mM of Zinc. Water for Irrigation was included with the test blank as negative control.

AS/NZS 4020 test sample requirements: 1) Non-cytotoxic response- confluent monolayer similar to test blank.

2) Cytotoxic response- irregularly shaped cells & cell death similar to positive control 0.4mM Zinc Sulphate.

EVALUATION:

On the basis of these results the samples of this product referred to in this report <u>have complied</u> with the test requirements of AS/NZS 4020:2018, Cytotoxic Activity; *Appendix F*.

7. MUTAGENIC ACTIVITY:

Methodology: AS/NZS 4020, *Appendix G* and in-house method TMP-191170.

Exposure: composite; 1 x system (system = 'in-the-product' exposure of 1 x Helix V1602-1 ($^{\sim}$ 3.25L) + 'total immersion' exposure of 1 x Pump Housing (Helix V1002-1) / 10L test water, with the extracts

combined to make up 13.25L). NOTE: FINAL VOLUME OF SYSTEM= 32.5L. **Extraction temperature:** $(65 \pm 2)^{\circ}$ C **Scaling factor:** 0.1 (1/10)

Extract: 24h **No. of samples tested:** 1 x system

60	Salmonella typhimurium	Mann	Std	. 60	Salmonella typhimurium	Maara	Std
-S9	TA98	Mean	Deviation	+ S9	TA98	Mean	Deviation
-ve c	34			-ve c	45		
	33	31	4		44	47	4
	27				51		
2,4-DNPH	331			2-AA	208		
	249	286	41		302	267	51
	279				291		
T.BLK	42			T.BLK	141		
	33	35	7		157	157	16
	29				173		
Sample	32			Sample	43		
	33	32	2		45	45	2
	30				47		

	Salmonella typhimurium		Std		Salmonella typhimurium		Std
-S9	TA102	Mean	Deviation	+ S9	TA102	Mean	Deviation
-ve c	112			-ve c	491		
	211	168	51		437	457	30
	182				443		
2,4-DNPH	892			Benzo(a)pyrene	981		
	834	865	29		970	980	10
	870				990		
T.BLK	178			T.BLK	494		
	108	133	39		468	477	15
	112				469		
Sample	133			Sample	432		
	132	131	2		453	450	17
	129				465		

+ S9 = * Metabolic Activator

NA = Not applicable

> = greater than

2,4-DNPH = 2, 4-dinitrophenylhydrazine

2-AA = 2-aminoanthracene

-ve c = Negative Control

AS/NZS 4020 test sample requirements: (The differences in the mean number of revertants between either of the negative controls and test sample extracts should not exceed two standard deviations (for triplicate analysis)). Positive response: If mean revertants for sample extract outside the range of spontaneous revertants for test strain.

EVALUATION:

On the basis of these results the samples of this product referred to in this report <u>have complied</u> with the test requirements of AS/NZS 4020:2018, Mutagenic Activity; *Appendix G*.

8. METALS:

Methodology: AS/NZS 4020, *Appendix H* and in-house methods TMP-191180 and TMP-191230. **Exposure:** composite; 1 x system (system = 'in-the-product' exposure of 1 x Helix V1602-1 (\sim 3.25L) + 'total immersion' exposure of 1 x Pump Housing (Helix V1002-1) / 10L test water, with the extracts combined to make up 13.25L). NOTE: FINAL VOLUME OF SYSTEM= 32.5L.

Extraction temperature: (65 ± 2)°C Scaling factor: 0.1 (1/10) Extracts: 24h

No. of samples for I: 1 x system **No. of samples for II:** 1 x system

Element	AS/NZS 4020: Maximum Allowable Concentration mg/L (ppm)	Limit of Reporting mg/L (ppm)	Test Blank mg/L (ppm)	Sample Extract I mg/L (ppm)	Sample Extract II mg/L (ppm)	FINAL RESULT I mg/L (ppm)	FINAL RESULT II mg/L (ppm)
Aluminium ¹ (Al)	0.2	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Antimony ¹ (Sb)	0.003	0.001	0.001	0.001	0.001	<0.001	<0.001
Arsenic ¹ (As)	0.01	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Barium¹ (Ba)	0.7	0.001	<0.001	0.001	<0.001	0.001	<0.001
Boron ¹ (B)	1.4	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Cadmium ¹ (Cd)	0.002	0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Chromium ¹ (Cr)	0.05	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Copper ¹ (Cu)	2	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Iron ¹ (Fe)	0.3	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Lead ¹ (Pb)	0.01	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Manganese ¹ (Mn)	0.1	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Mercury ¹ (Hg)	0.001	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Molybdenum ¹ (Mo)	0.05	0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Nickel ¹ (Ni)	0.02	0.001	<0.001	<0.001	0.002	<0.001	0.002
Selenium ¹ (Se)	0.01	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Silver ¹ (Ag)	0.1	0.001	<0.001	<0.001	<0.001	<0.001	<0.001

< = less than mg/L = milligram per litre 1 = ICPMS – In-house Method Code: LTM-MET 3040 First extract becomes final extract. NA = Not applicable

EVALUATION: On the basis of these results the samples of this product referred to in this report <u>have complied</u> with the test requirements of AS/NZS 4020:2018, Metals; *Appendix H*.

Test extractions were performed by Eurofins | ams. The test extracts were subsequently subcontracted to Eurofins | Environment Testing for assessment (NATA Accreditation No. 1261), Report No. 813982-W. In-house Method based on US EPA Method 3010A & US EPA Method 6020B.

9.I. PHOTO OF TEST SAMPLE:

9.II. BILL OF MATERIAL (BOM) PRODUCT:

Position	Designation	Material		HEHV V/1002 1
		Val () .		HELIX V1602-1
		Volume (mL) ->	2f2.2 (202 ²)	4482.88529
4444	DUMP HOUSING	4 4204	surface (cm²)	1.8355
1111	PUMP HOUSING	1.4301	1799.1100	0.4013
1150	STAGE CASING WITH RETURN GUIDE	1.4307	1038.6100	0.2317
1150A	NECK RING	FORTRON 1140-L6 SF3001	36.8000	0.0082
1154A	DISCHARGE CHAMBER WITH RETURN GUIDE VANE	1.4307	1084.2600	0.2419
1160	STAGE CASING WITHOUT RETURN GUIDE	1.4307	778.5200	0.1737
1160A	NECK RING	FORTRON 1140-L6 SF3001	36.8000	0.0082
2110	PUMP SHAFT	1.4301	103.6700	0.0231
2250	IMPELLER	1.4307	835.6000	0.1864
2410	SPACER	1.4307	110.3200	0.0246
2460A	SLEEVE SPACER	1.4301	18.0000	0.0040
2520	THRUST RING IMPELLER/RUSH	1.4404	25.0000	0.0056
2911	SHAFT END WASHER	1.4404	5.0000	0.0011
3044	BEARING STAGE CASING WITH RETURN GUIDE VANE	1.4307	1038.6100	0.2317
3044A	NECK RING	FORTRON 1140-L6 SF3001	36.8000	0.0082
3400	SHAFT SLEEVE	TUNGSTEN CARBIDE	9.0000	0.0020
4213A	ASSEMBLED RING COVER	1.4301	254.0000	0.0567
4213B	RING HOLDER	1.4308	18.0000	0.0040
		3M Silicon Carbide		
4220A	stationary seal : Ring	TUNGSTEN CARBIDE	1.0000	0.0002
4220B	stationary seal : Bellows	EPDM E3	30.1000	0.0067
		1.4571		
4220C	stationary seal : Spring	1.4401	33.4000	0.0075
4240A	rotating seal : O'Ring	TIMO-70 'O'-rings	9.8000	0.0022
4240B	rotating seal : Ring	EK2230	22.6000	0.0050
4271	SHAFT SLEEVE	1.4404	11.0000	0.0025
4610A	O'RING	EPDM EP1/1/5	2.0000	0.0004
4610B	O'RING	EPDM EP1/1/5	52.0000	0.0116
4610C	O'RING	EPDM EP1/1/5	3.3000	0.0007
4610D	O'RING	EPDM EP1/1/5	2.0000	0.0007
4610F	O'RING	EPDM EP 856	2.3000	0.0004
4610G	O'RING	EPDM EP 856	5.1000	0.0003
4610K	O'RING	EPDM EP80/2	24.0000	0.0011
6515	DRAIN AND PRIMING PLUG G3/8"	1.4404	18.3000	0.0034
6545-A-B	1/2 STOP RUSH	1.4404	3.2000	0.0041
	FILING PLUG G3/8"	1.4404	10.0000	0.0007
6521B		,		
6521A	FILING PLUG G3/8"	1.4404	1.0000	0.0002
9130	HOUSING-PIPE	1.4301	747.0833	0.1667
9923A	INFERIOR NUT	1.4404	22.0000	0.0049

9.III. BILL OF MATERIAL (BOM) PRODUCT RANGE:

Docition	Designation	Material					
Position	Designation	ividleTidi		HELIX V202-1		HELIX V402-1	
		Volume (mL) ->		3611.054059		3611.054059	
			surface (cm²)	1.6617	surface (cm²)	1.6461	
1111	PUMP HOUSING	1.4301	1518.3000	0.4205	1518.3000	0.4205	
1150	STAGE CASING WITH RETURN GUIDE	1.4307	672.9800	0.1864	678.8600	0.1880	
1150A	NECK RING	FORTRON 1140-L6 SF3001	14.3600	0.0040	14.3600	0.0040	
1154A	DISCHARGE CHAMBER WITH RETURN GUIDE VANE	1.4307	977.5500	0.2707	880.9600	0.2440	
1160	STAGE CASING WITHOUT RETURN GUIDE	1.4307	460.6800	0.1276	460.6800	0.1276	
1160A	NECK RING	FORTRON 1140-L6 SF3001	14.3600	0.0040	14.3600	0.0040	
2110	PUMP SHAFT	1.4301	89.6000	0.0248	89.6000	0.0248	
2250	IMPELLER	1.4307	429.0400	0.1188	457.3600	0.1267	
2410	SPACER	1.4307	41.3000	0.0114	41.3000	0.0114	
2460A	SLEEVE SPACER	1.4301	18.0000	0.0050	18.0000	0.0050	
2520	THRUST RING IMPELLER/RUSH	1.4404	25.0000	0.0069	25.0000	0.0069	
2911	SHAFT END WASHER	1.4404	5.0000	0.0014	5.0000	0.0014	
3044	BEARING STAGE CASING WITH RETURN GUIDE VANE	1.4307	672.9800	0.1864	678.8600	0.1880	
3044A	NECK RING	FORTRON 1140-L6 SF3001	14.3600	0.0040	14.3600	0.0040	
3400	SHAFT SLEEVE	TUNGSTEN CARBIDE	9.0000	0.0025	9.0000	0.0025	
4213A	ASSEMBLED RING COVER	1.4301	254.0000	0.0703	254.0000	0.0703	
4213B	RING HOLDER	1.4308	18.0000	0.0050	18.0000	0.0050	
	stationary seal : Ring	3M Silicon Carbide	1.0000	0.0003	1.0000	0.0003	
4220A	Stationary Sear. Millig	TUNGSTEN CARBIDE	TUNGSTEN CARBIDE		1.0000	0.0003	
4220B	stationary seal : Bellows	EPDM E3	30.1000	0.0083	30.1000	0.0083	
	stationary seal : Spring	1.4571	33.4000	0.0092	33.4000	0.0092	
4220C	stationary sear . Spring	1.4401	33.4000	0.0052	33.4000	0.0092	
4240A	rotating seal: O'Ring	TIMO-70 'O'-rings	9.8000	0.0027	9.8000	0.0027	
4240B	rotating seal : Ring	EK2230	22.6000	0.0063	22.6000	0.0063	
4271	SHAFT SLEEVE	1.4404	11.0000	0.0030	11.0000	0.0030	
4610A	O'RING	EPDM EP1/1/5	2.0000	0.0006	2.0000	0.0006	
4610B	O'RING	EPDM EP1/1/5	52.0000	0.0144	52.0000	0.0144	
4610C	O'RING	EPDM EP1/1/5	3.3000	0.0009	3.3000	0.0009	
4610D	O'RING	EPDM EP1/1/5	2.0000	0.0006	2.0000	0.0006	
4610F	O'RING	EPDM EP 856	2.3000	0.0006	2.3000	0.0006	
4610G	O'RING	EPDM EP 856	5.1000	0.0014	5.1000	0.0014	
4610K	O'RING	EPDM EP80/2	24.0000	0.0066	24.0000	0.0066	
6515	DRAIN AND PRIMING PLUG G3/8"	1.4404	18.3000	0.0051	18.3000	0.0051	
6545-A-B	1/2 STOP RUSH	1.4404	3.2000	0.0009	3.2000	0.0009	
6521B	FILING PLUG G3/8"	1.4404	10.0000	0.0028	10.0000	0.0028	
6521A	FILING PLUG G3/8"	1.4404	1.0000	0.0003	1.0000	0.0003	
9130	HOUSING-PIPE	1.4301	513.0346	0.1421	513.0346	0.1421	
9923A	INFERIOR NUT	1.4404	22.0000	0.0061	22.0000	0.0061	

9.III. BILL OF MATERIAL (BOM) PRODUCT RANGE CONT.:

Position	Designation	Material		HELIX V602-1		HELIX V1002-1
		Volume (mL) ->	4046.969675			4046.969675
		Volume (m.) ->	surface (cm²)	1.6193	surface (cm²)	1.7809
1111	PUMP HOUSING	1.4301	1518.3000	0.3752	1708.4400	0.4222
1150	STAGE CASING WITH RETURN GUIDE	1.4307	786.6500	0.1944	926.9700	0.2291
1150A	NECK RING	FORTRON 1140-L6 SF3001	26.9200	0.0067	26.9200	0.0067
1154A	DISCHARGE CHAMBER WITH RETURN GUIDE VANE	1.4307	887.9300	0.2194	894.1000	0.2209
1160	STAGE CASING WITHOUT RETURN GUIDE	1.4307	577.5700	0.1427	656.0800	0.1621
1160A	NECK RING	FORTRON 1140-L6 SF3001	26.9200	0.0067	26.9200	0.0067
2110	PUMP SHAFT	1.4301	89.6000	0.0221	89.6000	0.0221
2250	IMPELLER	1.4307	529.9800	0.1310	628.8400	0.1554
2410	SPACER	1.4307	83.4800	0.0206	83.4800	0.0206
2460A	SLEEVE SPACER	1.4301	18.0000	0.0044	18.0000	0.0044
2520	THRUST RING IMPELLER/RUSH	1.4404	25.0000	0.0062	25.0000	0.0062
2911	SHAFT END WASHER	1.4404	5.0000	0.0012	5.0000	0.0012
3044	BEARING STAGE CASING WITH RETURN GUIDE VANE	1.4307	786.6500	0.1944	926.9700	0.2291
3044A	NECK RING	FORTRON 1140-L6 SF3001	26.9200	0.0067	26.9200	0.0067
3400	SHAFT SLEEVE	TUNGSTEN CARBIDE	9.0000	0.0022	9.0000	0.0022
4213A	ASSEMBLED RING COVER	1.4301	254.0000	0.0628	254.0000	0.0628
4213B	RING HOLDER	1.4308	18.0000	0.0044	18.0000	0.0044
4220A	stationary seal : Ring	3M Silicon Carbide TUNGSTEN CARBIDE	1.0000	0.0002	1.0000	0.0002
4220B	stationary seal : Bellows	EPDM E3	30.1000	0.0074	30.1000	0.0074
4220C	stationary seal : Spring	1.4571 1.4401	33.4000	0.0083	33.4000	0.0083
4240A	rotating seal: O'Ring	TIMO-70 'O'-rings	9.8000	0.0024	9.8000	0.0024
4240B	rotating seal : Ring	EK2230	22.6000	0.0056	22.6000	0.0056
4271	SHAFT SLEEVE	1.4404	11.0000	0.0027	11.0000	0.0027
4610A	O'RING	EPDM EP1/1/5	2.0000	0.0005	2.0000	0.0005
4610B	O'RING	EPDM EP1/1/5	52.0000	0.0128	52.0000	0.0128
4610C	O'RING	EPDM EP1/1/5	3.3000	0.0008	3.3000	0.0008
4610D	O'RING	EPDM EP1/1/5	2.0000	0.0005	2.0000	0.0005
4610F	O'RING	EPDM EP 856	2.3000	0.0006	2.3000	0.0006
4610G	O'RING	EPDM EP 856	5.1000	0.0013	5.1000	0.0013
4610K	O'RING	EPDM EP80/2	24.0000	0.0059	24.0000	0.0059
6515	DRAIN AND PRIMING PLUG G3/8"	1.4404	18.3000	0.0045	18.3000	0.0045
6545-A-B	1/2 STOP RUSH	1.4404	3.2000	0.0008	3.2000	0.0008
6521B	FILING PLUG G3/8"	1.4404	10.0000	0.0025	10.0000	0.0025
6521A	FILING PLUG G3/8"	1.4404	1.0000	0.0002	1.0000	0.0002
9130	HOUSING-PIPE	1.4301	630.0590	0.1557	630.0590	0.1557
9923A	INFERIOR NUT	1.4404	22.0000	0.0054	22.0000	0.0054

9.IV. METALLURGICAL TEST REPORT:

UNIVERSAL SCIENTIFIC LABORATORY PTY LTD

ABN 76 093 281 764

UNIT 12, 65 MARIGOLD STREET, REVESBY NSW 2212, AUSTRALIA PO BOX 49, MILPERRA NSW 2214, AUSTRALIA TELEPHONE: +61(2) 9771 5592 • FACSIMILE: +61(2) 9771 2482 EMAIL: info@usl com au WEBSITE: www.usl.com au

ANALYSIS REPORT

ORIGIN: AMS LABORATORIES P/L

DESCRIPTION: BODY OF HELIX V(E) PUMP

ORDER NO: 7768

ALLOY CODE UNS S30400

COLOUR CODE

REPORT NO: 18/2573 REPORT DATE 12 /09/18

LOG BOOK NO: 180626 HEAT NO: WIL1823939

Sample No.

UNITS W/W %

					-	-				**	-		
7857.076	С	S	P	Si	Mn	Cr	N.C.	0					_
					The state of the s	-		WTChranco sarp up	Reselvation and Compa	urbani pas rapiner	THE SAME OF THE PARTY.	orton belleviel and	
3	.04	< 01	.02	.28	1.2	18.0	8.7	.26	.16	.07		The same of the sa	

		SPECIFICATION	LIMITS
~~	 		

MAX: .08 .030 .045 1.00 2.00 20.0 10.5 MIN:

ANALYTICAL TECHNIQUE(S)

MU= Measurement Uncertainty

REMARKS

This analysis was performed at

12, 65 Marigold St., Revesby

Fo the best knowledge of the company the results on this report are correct, however no legal responsibility will be accepted for or arising from their use. Samples were tested as received unless stated otherwise. The report shall not be reproduced onless in full. Measurement uncertainty data are available on request.

Accredited for compliance with ISO/IEC 17025 NATA accredited laboratory No. 492 This report must not be reproduced except in foll cheek of solle

WILLIAM TING AUTHORISING OFFICER

NOTE: Results relate to Eurofins | ams LIMS Reference No. NJ19AA5851-1 (Tests completed on 31/10/2019)