

Wilo NL End Suction Base Mounted Pumps

End Suction, Centerline Discharge Base Mounted Pumps – February 18, 2013 Marcos D. Roimicher, Product Manager BS Market Segment, Product Management Department

120-05-002-0213

Agenda

- 1. Features and Benefits
- 2. General Technical Specifications
- 3. Model Number Designation
- 4. Family Curves
- 5. Detailed Technical Features / Construction Details
- 6. Options
- 7. Noise Levels
- 8. Wear Ring Discussion

² Wilo NL End Suction Base Mounted Pumps – Marcos D. Roimicher

Features and Benefits

Radially Split, Back Pullout Design

• Repair "wet end" without disturbing piping

WILO Brain "Easy Read" Model Numbering System

• References flange size and max impeller size in standard North American units

Uses Baldor NEMA Frame Foot Mount Motors (other Manufacturers are OK)

- All voltages and enclosures available
- Various efficiency types and VFD-ready
- Do not need to be Inverter Duty
- Optional Aegis Ring motors available

Features and Benefits

Excellent Delivery Times – 2 weeks

• Common pump ends and motors stocked in Thomasville, Georgia

1/4" Pressure Gauge Tappings Standard

• Suction and discharge

Excellent Commercial Pump Warranty

• 24 months from date of purchase

General Technical Specifications

Size Range – Flange Size

- 1-¼″ to 8″
- 18 Models @ 2 Pole (3600 RPM)
- 39 Models @ 4 Pole (1800 RPM)

Horsepower Range

- 2 Pole (3600 RPM) 1.0 to 75 Hp
- 4 Pole (1800 RPM) 0.5 to 200 Hp

Performance

• Max flow 2800 USGPM, Max head 300 ft

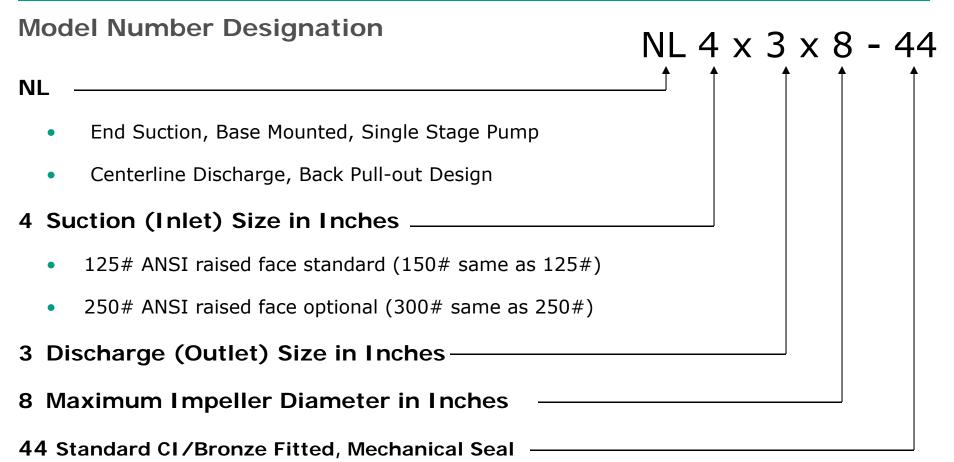
General Technical Specifications

Pressure Ranges

- 150 PSI maximum inlet pressure with standard mechanical seal limitations
- 250 PSI maximum discharge pressure (with 250 # Flange Drilling) optional

Temperature Range for HVAC applications

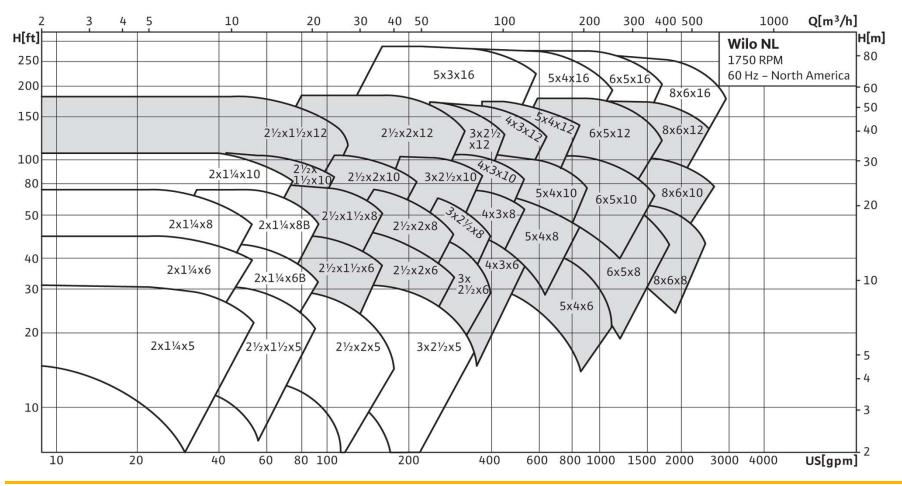
• - 4°F to + 250°F (-20°C to + 120°C) at maximum ambient temperature: 104°F (40°C)


Approved Liquids

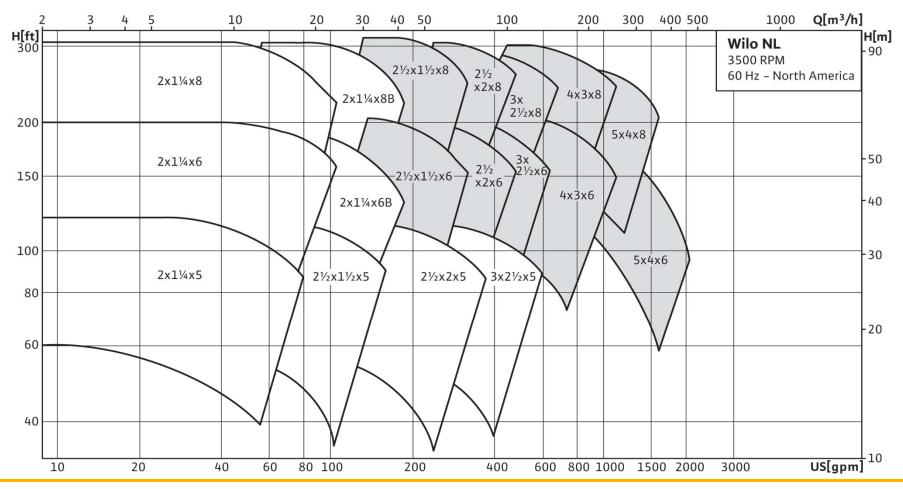
• Water-glycol mixtures - for 20-40% glycol and fluid temperature \leq 104°F (40°C)

Standard Construction Material Specification

• Cast iron, bronze fitted, mechanical seal type



Note: Complete units include motor HP, motor enclosure, # poles (RPM), frame size, phase and voltage


Family Curves – 1750 RPM (4 Pole), 60 Hz

Gray designates stock pump

Family Curves – 3500 RPM (2 Pole), 60 Hz

Gray designates stock pump

Detailed Technical Features 10.20 23.00 43.30 16.10 32.10 33.00 21.00 **List Of Components** 10.20 Volute Casing Mechanical Seal Configuration 16.10 Casing Cover 18.30 Support Foot 21.00 Shaft 23.00 Impeller E 32.10 Ball Bearing 33.00 Bearing Bracket 43.30 Mechanical Seal Configuration Packed Seal 46.10 Stuffing Box 52.40 Shaft Sleeve 52.40 46.10 18.30

• Materials of Construction

ltem No.	Part Name	MATERIAL EXECUTION			
		06	08	26	44 (Std)
10.2	Volute Casing	Cast Iron ASTM A48 class 35 (DIN: C.I. FG 260)			
16.1	Casing Cover				
21	Shaft	STAINLESS STEEL AISI 420			
23	Impeller	Cast Iron ASTM A48 class 35 (DIN: C.I. FG 260)	Cast Iron ASTM A48 class 35 (DIN: C.I. FG 260)	Bronze ASTM 83600/SAE40 (DIN: BR LG 2)	Bronze ASTM 83600/SAE40 (DIN: BR LG 2)
	Bearing Bracket	Cast Iron ASTM A48 class 35 (DIN: C.I. FG 260)			
43.3	Mechanical Seal	Gland Packed	EPDM	Gland Packed	EPDM
47.1	Shaft Sleeve for Gland packing	STAINLESS STEEL AISI 420			
	Gland Packing	PTFE	Mech Seal	PTFE	Mech Seal

Bearings

- Deep groove ball bearings lubricated for the life of the bearings
- Only three shaft groups covering all sizes $L_{10} \ge 20,000$ hrs @ shutoff (0 flow)

Shaft Group	Bearing Size.
25	6306 2Z C3
35	6308 2Z C3
45	6311 2Z C3

Flanges

- Flanges are 125# (150#) ANSI Type (250 # optional different Bolt Circle Diameter and # of holes)
- Per ANSI 16.5 at 250°F, 125# (150#) flange is rated to 230 psi

Pump Performance

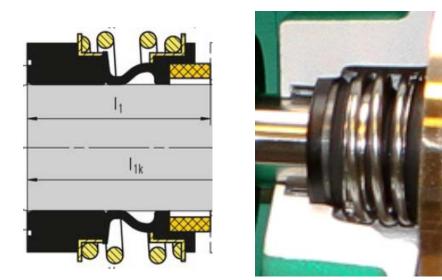
• Pump performance conforms to Hydraulic Institute standards

Pressure Rating

• 250 PSI maximum operating pressure

Painting

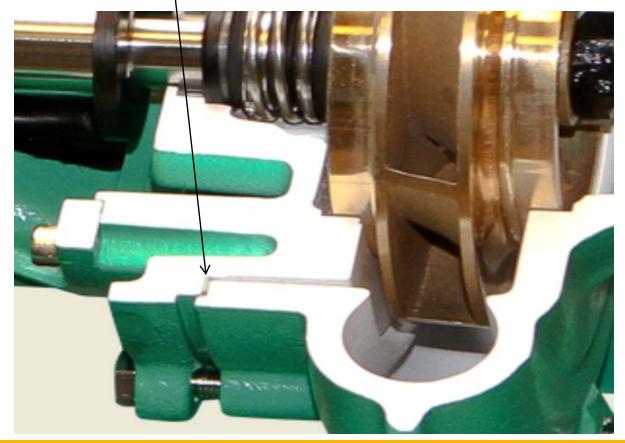
- 2-part epoxy paint as per internal standards
- Primer: Red Oxide Zinc Coated ~ 40 microns thick
- Final top coat: Enamel paint ~ 40 microns thick "Wilo green" (Pantone 334) as standard
- Customized paint available upon request, will require longer lead time and extra cost


Construction Features

- Reduced shaft deflection (compliance with ISO 5199)
- Oversized radial ball bearings
- Improved lubrication and cooling of mechanical seal through conical seal chamber and anti-vortex ribs
- No seal piping for flushing of the seal is needed!
- Improved hydraulic efficiency

Shaft Sealing

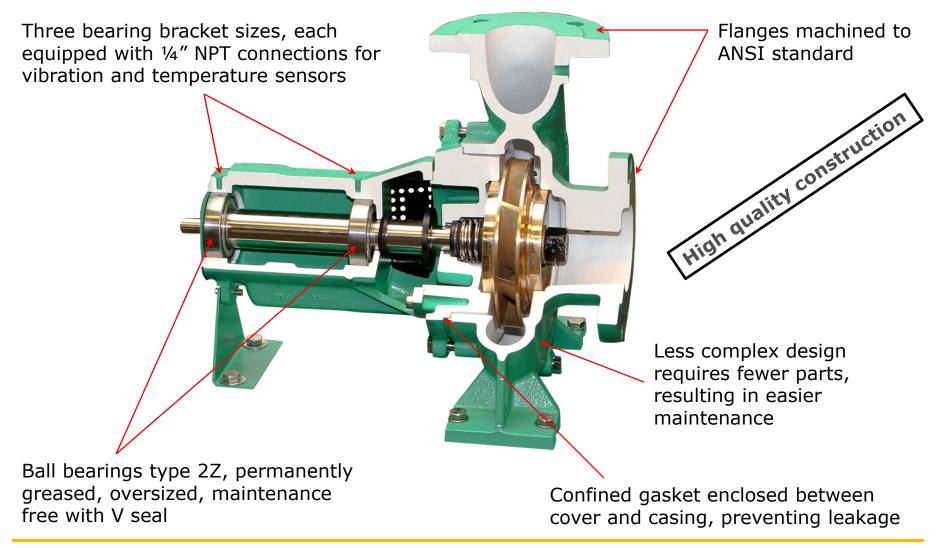
- Mechanical Seal standard for temperatures (-4°F to 250°F)
 - Seal, Unbalanced, bidirectional, bellows seal internally flushed, no external tubing
 - Eagle-Burgmann Type: MG12AQ1EGG

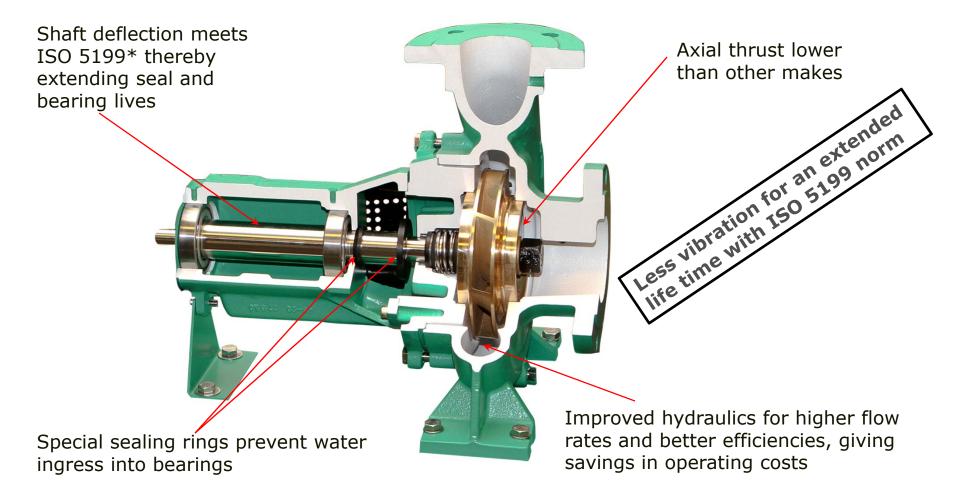


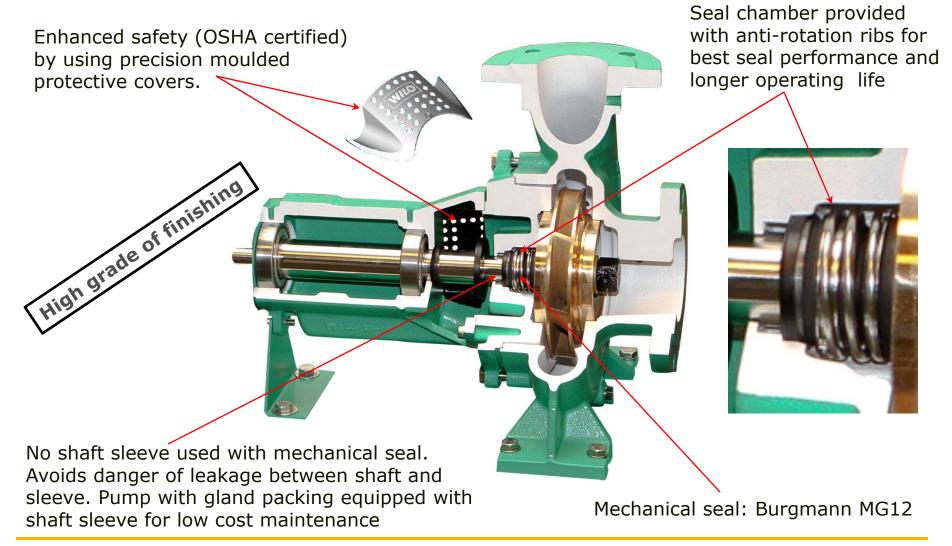
MG12 AQ1EGG				
А	: Carbon Graphite Antimony Impregnated			
Q1 E	: Silicon carbide			
E G	: EPDM : Components in SS			

Casing Sealing

• Flat cellulose gasket

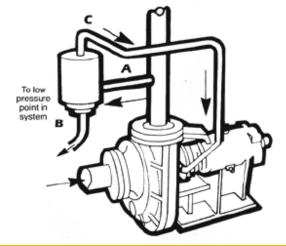



Conical Seal Chamber



* Covers class II for pumps of back pull-out design as used primarily in the chemical and petrochemical industries.

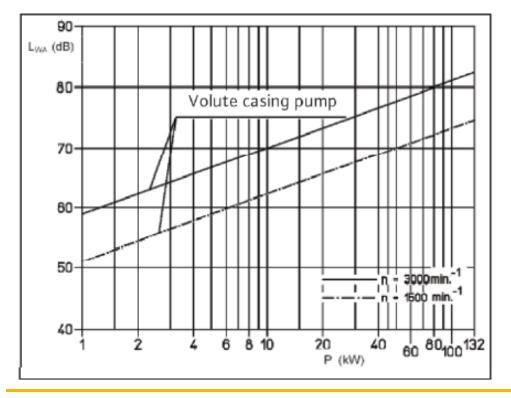
Detailed Technical Features, cont'd



Options

Cyclone Sediment Separator

- Provides clean, abrasive-free injection flow for flushing the surfaces of the mechanical shaft seal (longer lead time and extra cost)
- John Crane model 100 (nylon), 1/2" NPT
 - "A" feed inlet to the separator
 - "B" particle-bearing underflow return (dirty discharge)
 - "C" clean overflow routed to the seal (clean discharge)



Noise Levels

The noise levels of the pump comply with the Directive 001/30 - 1992 of the EUROPUMP Commission.

• The following table provides approximate values:

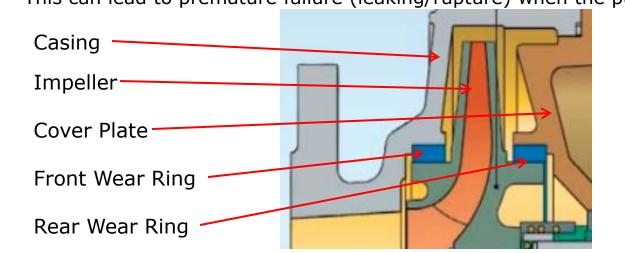
Notes :

Additional noise can be generated by:

- 1. Motor
- 2. A possible misalignment of the coupling
- 3. Pipework The larger the pipe diameter, the lower the pipe noise

Wear Ring Discussion

Reasons why front and/or rear wear rings are not needed:


- Wilo has very high quality/manufacturing components and assemblies which reduces the axial (along shaft) and radial (perpendicular to shaft) forces to minimum levels
 - This results in high concentricity between components like the impeller wear surface and casing bore
- If an impeller deflects enough to rub on the wear ring(s) serious problems will arise
 - A wear ring will due nothing at this point therefore, an impeller and a wear rings will have to be replaced versus just an impeller = more \$\$
- A wear ring is only necessary when the fluid which is being pumped is abrasive and creates wear
 - Wear rings are sacrificial parts and are usually of the same or like material of the impeller, i.e. bronze impeller and wear ring
 - Cast iron (pump) performs much better than bronze (wear ring) with abrasives

Wear Ring Discussion

Reasons why front and/or rear wear rings are not needed:

- In general, for HVAC applications, abrasive liquids are not normally used
 - Otherwise, the pumps would be over-engineered for the application and cost more
- To allow for wear rings to fit within the pump, the pump casing and cover plates need to be "machined out"
 - This reduces the wall thicknesses of the casing and/or cover plate

• This can lead to premature failure (leaking/rupture) when the pump is pressurized

²³ Wilo NL End Suction Base Mounted Pumps – Marcos D. Roimicher

Wear Ring Discussion

Reasons why front and/or rear wear rings are not needed:

- Use of wear rings can actually reduce overall pump efficiency due to poor machining/QA
 - Without wear rings only (3) parts have to be machined casing, impeller and cover plate
 - When wear rings are used, as many as (4) or (5) parts need to be machined casing, impeller, cover plate, and front and/or rear wear rings
 - When a standard tolerance stack-up is done (worst-case) the maximum diametrical clearance is larger on (5) parts than it is on (3) parts
- Wear rings are needed for fire protection due to regulations by UL, cUL and FM, and they are NOT required for standard HVAC applications
- When end users and maintenance people in the HVAC business from the US and Europe were asked "how often are wear rings changed", the answer was "never", 98% of the time

Questions/Comments?

