Net Positive Suction Head (NPSH)

NPSH combines all the factors limiting the suction side of a pump; internal pump losses, static suction lift, friction losses, vapor pressure and atmospheric conditions. It is important to differentiate between required and available NPSH.

NPSH Required

Required NPSH is a factor designed into a pump and measurable in the test laboratory by the manufacturer. Testing facilities can determine losses in the suction piping static lift and barometric pressures.

NPSH Available

The term for providing sufficient pressure on the suction, at the impeller eye, to prevent "boiling" is known as NPSH Available. It is a function of the pumping system and consists of pressure on the liquid at its source, the elevation of the liquid with respect to the impeller centerline, losses in the suction piping and vapor pressure of the liquid. If the available NPSH is not equal to or greater than that required by the pump, it must be increased. This is usually done by increasing the static head.

NPSH Formulas

Proposed Installation

To calculate the NPSH available in a proposed application, the following formula is recommended:

Hsv = Hp +/- Hz - Hf - Hvp

Hsv: Available NPSH expressed in feet of fluid

Hp: Absolute pressure on the surface of the liquid where the pump takes suction, expressed in feet. This could be atmospheric pressure or vessel pressure (pressurized tank).

Hz: Static elevation of the liquid above or below the centerline of the impeller, expressed in feet

Hf: Friction and entrance head loss in the suction piping, expressed in feet

Hvp: Absolute vapor pressure of the fluid at the pumping temperature, expressed in feet of fluid

	Prope	rties of W	ater		Atmospheric Pr	essure	& Boiling	g
Temp	Absolu	ute Vapor	Specific		Point of Water At	Variou	s Altitud	es
٥F	PSI	Ft Water	Gravity	Altitude	Barometer Inches	Atmo	ospheric essure	Boiling Point
60	0.26	0.59	0.999		meredry	PSIA	Ft Water	
85 100 120 130	0.60 0.95 1.69 2.22	1.4 2.2 3.9 5.0	0.996 0.993 0.989 0.986	-1000 -500 0.0 +500	31.0 30.5 29.9 29.4	15.2 15.0 14.7 14.4	32.5 34.6 33.9 33.3	213.8 212.9 212.0 211.1
140	2.89	6.8	0.983	+1000	28.9	14.2	32.8	210.2
150 160 170 180	3.72 4.74 5.99 7.51	8.8 11.2 14.2 17.8	0.981 0.977 0.974 0.970	+1500 +2000 +2500 +3000	28.3 27.8 27.3 26.8	13.9 13.7 13.4 13.2	32.1 31.5 31.0 30.4	209.3 208.4 207.4 206.5
185	8.38	20.00	0.969	+3500	26.3	12.9	29.8	205.6
190 195 200 202	9.34 10.38 11.53 12.01	22.3 24.9 27.6 28.8	0.966 0.964 0.963 0.962	+4000 +4500 +5000 +5500	25.8 25.4 24.9 24.4	12.7 12.4 12.2 12.0	29.2 28.8 28.2 27.6	204.7 203.8 202.9 201.9
204	12.51	30.00	0.961	+6000	24.0	11.8	27.2	201.0
206 208 210 212	13.03 13.57 14.12 14.70	31.2 32.6 33.9 35.4	0.960 0.960 0.959 0.958	+6500 +7000 +7500 +8000	23.5 23.1 22.7 22.2	11.5 11.3 11.1 10.9	26.7 26.2 25.7 25.2	200.1 199.2 198.3 197.4
214	15.29	37.0	0.957	+8500	21.8	10.7	24.7	196.5
216 218 220 222	15.90 16.54 17.19 17.86	38.4 40.0 41.6 43.3	0.956 0.956 0.955 0.954	+9000 +9500 +10000 +15000	21.4 21.0 20.6 16.9	10.5 10.3 10.1 8.3	24.3 23.8 23.4 19.2	195.5 194.6 193.7 184.0

Ì	226	19.28	46.8	0.953
	228	20.02	48.6	0.952
	230	20.78	50.5	0.951
	240	24.97	61.0	0.947
	250	29.83	73.2	0.943
	300	67.00	168.6	0.918
	350	134.60	349.0	0.891