

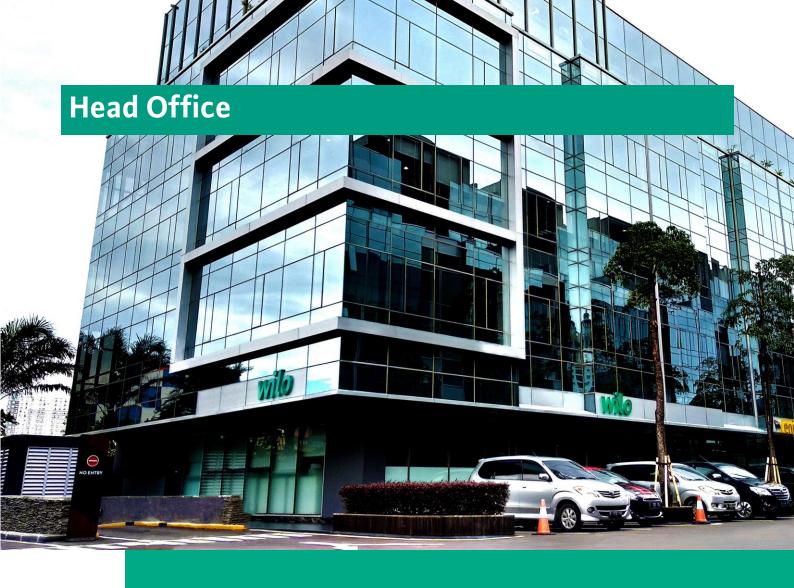
Wilo-Dewatering Pump

Reliable and Energy Efficient Pump

PT Wilo Pumps Indonesia

GREEN SOLUTIONS FOR A BETTER CLIMATE.

Smart, Efficient, Sustainable, Our solutions offer measurable added value.


Energy-efficiency and resource-efficiency are vital elements to the efforts to protect climate. One of our primary sustainability goals is to supply people with clean water while reducing our ecological footprint.

With our high efficiency technologies we contribute worldwide to more gentle handling with valuable resources like water and energy. In doing so, we rely on smart products that integrate seamlessly into digitally controlled infrastructures. In this context, we use digitalisation which offers us new opportunities in terms of energy savings.

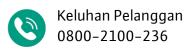
Wilo offers an extensive range of products for Building Services, Water Management and Industry, and is continuously working on the further development of its product portofolio.

In 2008, **PT Wilo Pumps Indonesia** was established in Jakarta, as a subsidiary of Wilo SE Germany. Located at Altira Business Park, North Jakarta, Wilo Pumps Indonesia would be a preferred partner from the design stage to after sales service.

BUILDING SERVICES RESIDENTIAL

BUILDING SERVICES COMMERCIAL

ОЕМ

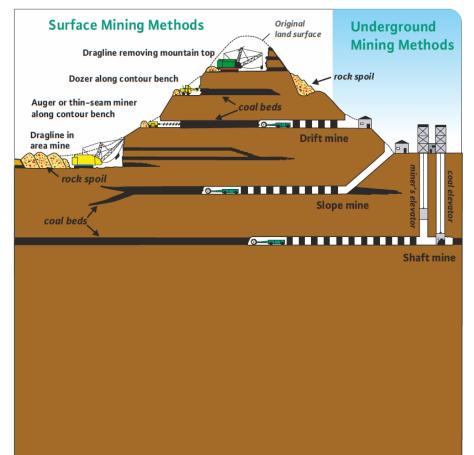

WATER MANAGEMENT

INDUSTRY

Altira Business Park, Block A01-A02 Jalan Yos Sudarso Kav. 85, Sunter Jaya Jakarta, 14350, Indonesia

www.wilo.co.id

Stay connected with us



Wile Durana Indonesia

Dewatering is one of the most important process in mining and to controlling and managing surface and groundwater play a major role to allow uninterrupted operation in relatively dry conditions and improve the efficiency of extraction methods. Wilo provides a range of highly reliable & Efficient pumps for this purpose.

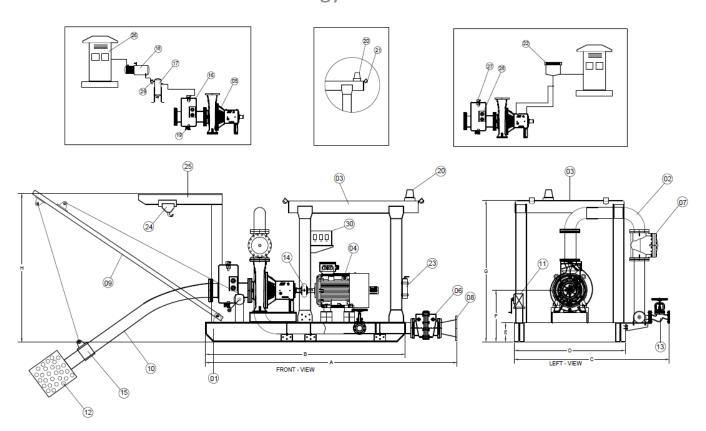
Mining is the process of extraction or digging things out of the ground.

Mining things from the ground is called extraction. Mining can include extraction of metals and minerals, like coal, diamond, gold, silver, platinum, copper, tin and iron, etc.

1. Surface mining

- → Open cast or Open Pit mining
- → Mountain top mining

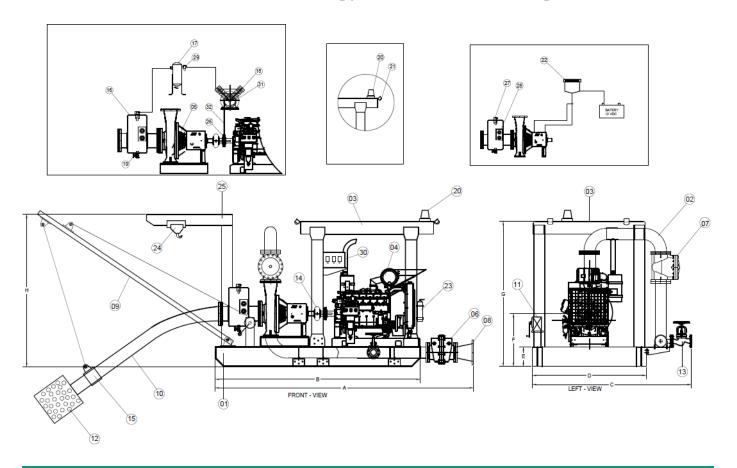
2. Underground mining


- → Drift mining with horizontal access tunnels
- → and Shaft mining with vertical access shafts

Reliable and Energy Efficient PumpFor Mining Industry

Product Solutions for Dewatering Applications

Thanks to Excellent Technology from Wilo with Motor Driver


General Drawing Assembly

- 1. Skid base heavy duty with fuel tank
- 2. Pipe Assy
- 3. Roof Assy
- 4. Motor Electric
- 5. Barepump FD
- 6. Gate Valve.
- 7. Non-Return Valve
- 8. Increaser
- 9. Boom Assy
- 10. Flexible Suction Hose
- 11. Winch Manual
- 12. Suction Strainer
- 13. Drainage Valve
- 14. Flexible Coupling
- 15. Bracket Clamp

- 16. Vacuum Tank
- 17. Separator Tank
- 18. Electric Vacuum Pump
- 19. Drainage Valve
- 20. Sprinkle Lamp
- 21. Working Lamp
- 22. Automatic Memolube
- 23. Fire Extingusher
- 24. Crane Handling
- 25. Structure Crane
- 26. Main Control Panel
- 27. Ball Vacuum Valve
- 28. Primming Sensor
- 29. Air Filter
- 30. Panel Primming

Product Solutions for Dewatering Applications

Thanks to Excellent Technology from Wilo with Engine Driver

General Drawing Assembly

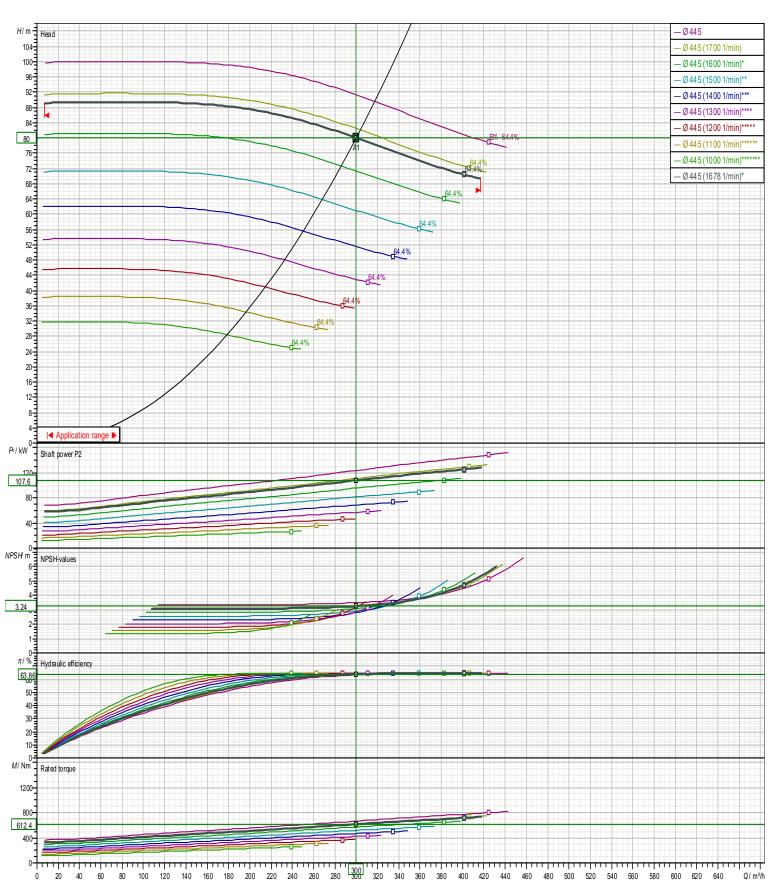
- 1. Skid base heavy duty with fuel tank
- 2. Pipe Assy
- 3. Roof Assy
- 4. Industrial Variable Speed Engine
- 5. Barepump FD
- 6. Gate Valve.
- 7. Non-Return Valve
- 8. Increaser
- 9. Boom Assy
- 10. Flexible Suction Hose
- 11. Winch Manual
- 12. Suction Strainer
- 13. Drainage Valve
- 14. Flexible Coupling
- 15. Bracket Clamp

- 16. Vacuum Tank
- 17. Separator Tank
- 18. Electric Vacuum Pump
- 19. Drainage Valve
- 20. Sprinkle Lamp
- 21. Working Lamp
- 22. Automatic Memolube
- 23. Fire Extingusher
- 24. Crane Handling
- 25. Structure Crane
- 26. Pully Type C
- 27. Ball Vacuum Valve
- 28. Primming Sensor
- 29. Air Filter
- 30. Panel Primming
- 31. Magnetic Clutch
- 32. Belt Pully

Wilo – FD Pump

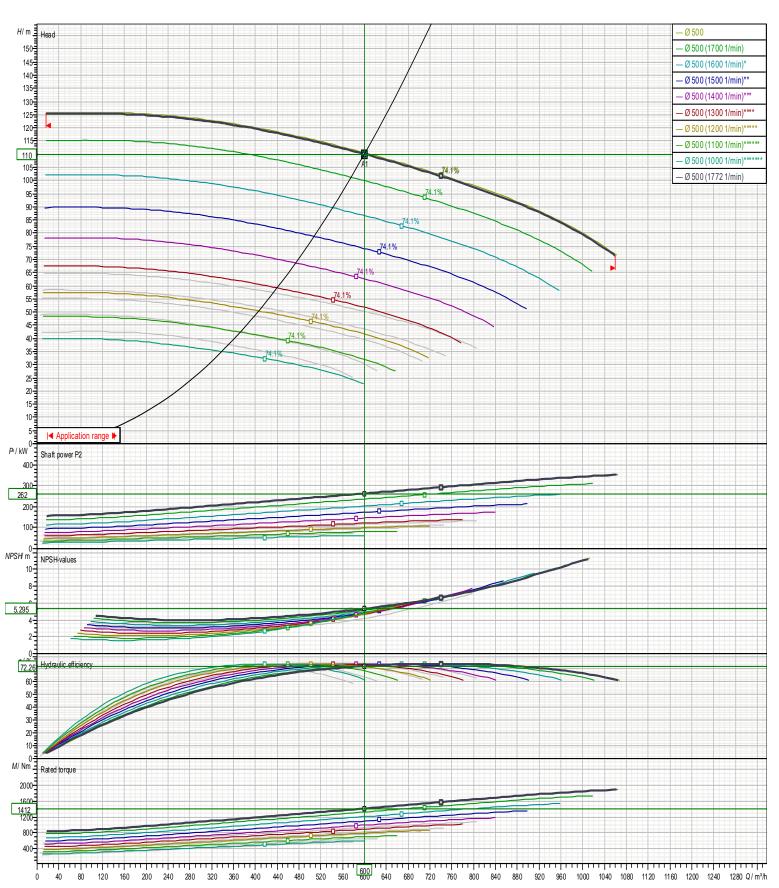
Dewatering pump system complete with pump and diesel engine driver or electric motor as option, mounted on a pontoon. To fulfill the needs, we provide 3 types of pump to run our dewateringsystem.

Horizontal pumps according ISO 2858 (DIN 24256) is the preferred solution to handle wastewater.

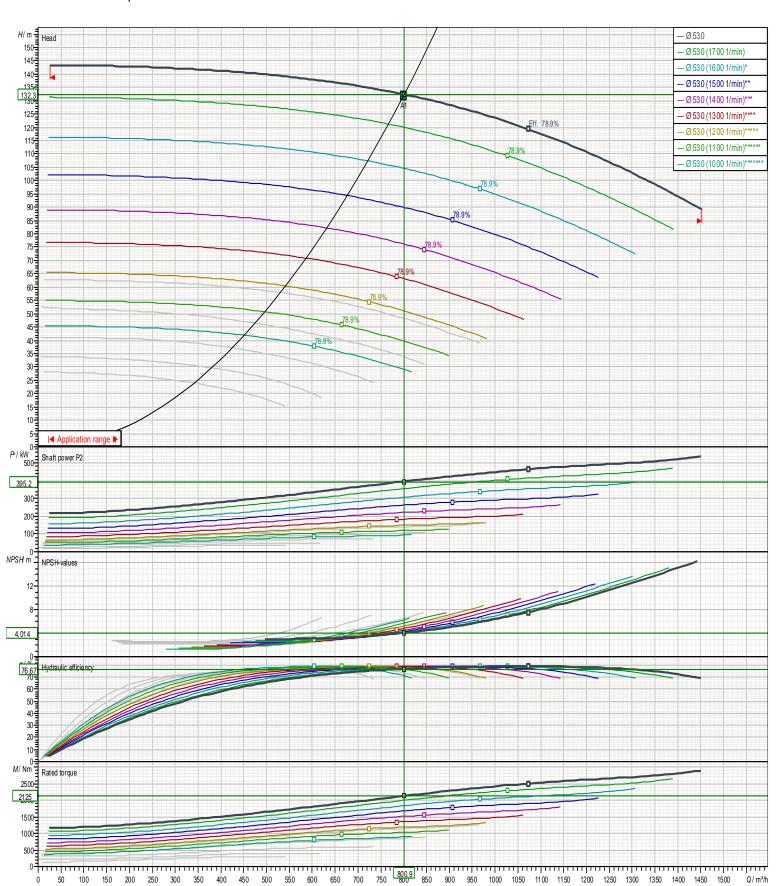


DETAIL INFORMATION

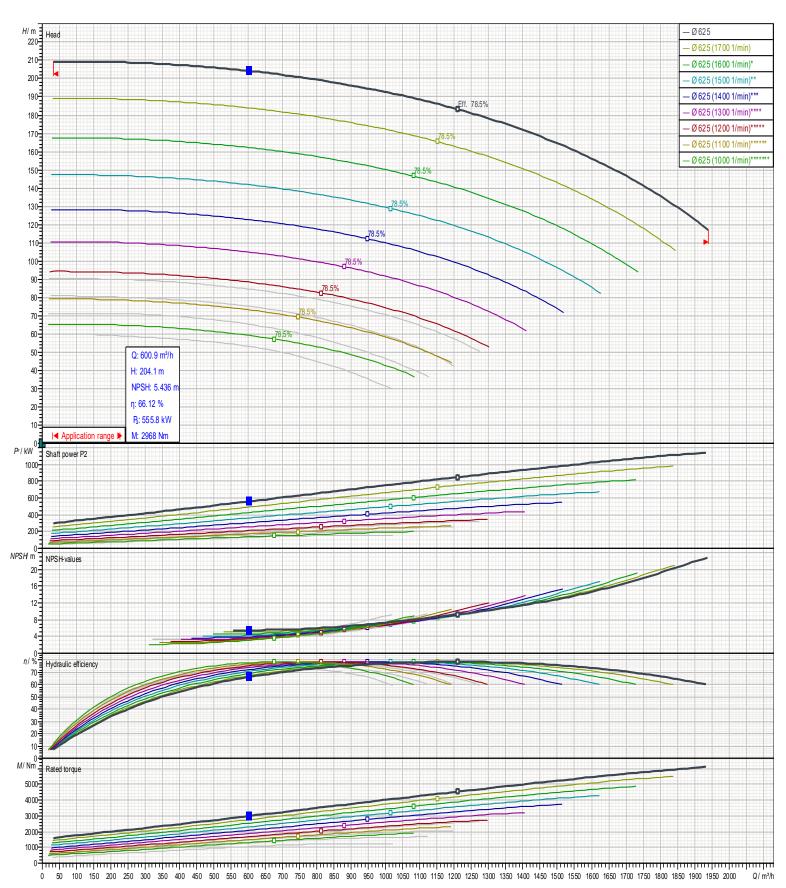
	Wilo-	-FD 100	Wil	o-FD 150	Wil	o-FD 200	Wild	o-FD 200H	
Hydraulic Data (Duty Po	oint)								
Flow	Max 4	.07 m³/h	Max	1060 m³/h	Max	1450 m³/h	Max	1940 m³/h	
	Rated 3	300 m³/h	Rated	600 m³/h	Rated	800 m³/h	Rated	600 m³/h	
	Min 6	,49 m³/h	Min	16,8 m³/h	Min	25,6 m³/h	Min	32 m³/h	
Head	Max 8	9,4 mWC	Max	125 mWC	Max	143 mWC	Max	209 mWC	
	Rated 8	30 mWC	Rated	110 mWC	Rated	132 mWC	Rated	204 mWC	
	Min 6	9,3 mWC	Min	71,3 mWC	Min	89,2 mWC	Min	117 mWC	
Impeller	Max 5	32 mm	Max	532 mm	Max	530 mm	Max	625 mm	
	Design 4	124 mm	Design	499 mm	Design	530 mm	Design	625 mm	
	Min 4	00 mm	Min	445 mm	Min	390 mm	Min	525 mm	
Pump Data (ISO 2858 S	tandard Pum	р)							
ImpellerType	Closed		Open		Special (Open	Closed		
Shaft Sealing	Gland Pack	ing	Gland Packing		Gland Pa	Gland Packing		Gland Packing	
Bearing Lubrication	Grease		Grease		Grease		Grease		
Pressure Rating	16	Bar		Bar	16	Bar	16	Bar	
Min. Fluid Temperature	-40	°C	-40	°C	-40	°C	-40	°C	
Max. Fluid Temperature	120	°C	120	°C	120	°C	120	°C	
Max. Solid Size	17	mm	39	mm	35	mm	34 Mm	Ī	
Dimensions									
Suction Port	DN200PN	10	DN250 PN16		DN250F	DN250 PN16		DN300 PN16	
Discharge Port	DN100PN	10	DN150 F	PN16	DN200 F	N16	DN200 F	N16	
Materials									
Casing	Duplex SS ((1.4460)	Duplex S	SS (1.4460)	Duplex S	Duplex SS (1.4460)		Duplex SS (1.4460)	
Casing Cover	Duplex SS ((1.4460)	Duplex S	SS (1.4460)	Duplex S	Duplex SS (1.4460)		Duplex SS (1.4460)	
Impeller	Duplex SS ((1.4460)	Duplex S	SS (1.4460)	Duplex S	SS (1.4460)	Duplex S	Duplex SS (1.4460)	
Shaft	Duplex SS ((1.4460)	Duplex S	SS (1.4460)	Duplex S	SS (1.4460)	Duplex S	SS (1.4460)	


Curve Wilo-FD 100

Flow: 300 m³/h vs Head: 80 m


Curve Wilo-FD 150

Flow: 600 m³/h vs Head: 110 m


Curve Wilo-FD 200

Flow: 800 m³/h vs Head: 132 m

Curve Wilo-FD 200 High Head

Flow: 600 m³/h vs Head: 204 m

OUR SPECIAL MATERIALS

Duplex Stainless Steel - EN 1.4460

A stainless austenitic-ferritic steel


Typical Analysis	C	Cr	Ni	Mo
%	0,025	25,4	5,75	1,5
Delivery Condition		Solution	annealed	

Mechanical Properties

Values for solution annealed condition to EN 10088 - 3

Tensile strength Rm	$N/_{mm^2}$	620 - 880
Proof strength RP_{02}	$N/_{mm^2}$	Min 460
Elongation ${\cal A}_5$	%	Min 20
Impact energy KV – RT	$J_{/cm^2}$	Min 85
Hardness	НВ	Max 260

Proof Strength

Physical properties acc. to EN 10088

Temperature	20° C	100° C	200° C	300° C
Density $^{kg}\!\!/_{dm^3}$	7,8			
Modulus of Elasticity GPa	200	194	186	180
Mean coeff. Of Thermal Expansion 20° C – Temp x 10 ⁻⁶ . K		13,0	13,5	14,0
Specific Thermal Capacity ^W / _{m. K}	15			
Electrical Resistivity ${\it \Omega}$. mm^2/m	0,75			
Specific heat $\frac{J}{kg.\ K}$	500			

The steel is susceptible to embrittlement when applied in the temperature range of 300–900° C. Scaling temperature in air is approx. 1070° C.

EN 1.4460 is an acid resistant austenitic-ferritic steel that is characterized by:

- → Excellent resistance to pitting corrosion, crevice corrosion, stress corrosion and corrosion fatigue
- → High strength
- → Excellent machinability
- → High toughness

Typical application areas

- → Propeller shafting
- → Pump shafting
- → Pump parts
- → Valve parts
- → Pistons
- → Spindles
- → Stirrers
- → Bolting
- \rightarrow Nuts

Corrosion resistance

EN 1.4460 shows very good corrosion resistance particularly in chloride-bearing environments. Its resistance to chloride caused attacks such as pitting, corrosion crevice, stress corrosion and corrosion fatigue is much better than that of fully austenitic stainless steels of EN 1.4404 type. Also, in most cases EN **1.4460** is much better than EN 1.4404 type with regard to general corrosion resistance in reducing and oxidizing acids. Besides the two-phase microstructure and the low carbon content render **EN 1.4460** better resistance to intracrystalline corrosion after sensitization within the temperature interval 500 – 900° C.

When extremely high demands are imposed on resistance to pitting and crevice corrosion it is recommended that machining of the steel surface be followed by pickling or passivation.

OUR SPECIAL MATERIALS

Duplex Stainless Steel - EN 1.4460

Heat Treament

Solution annealing $1020 - 1100^{\circ}$ C. Holding time at solution annealing temperature approx. 30 min, followed by rapid cooling in water. Stress relief treatments can in special cases be performed at 550° C – 600° C.

Fabrication

Hot and cold forming

Hot forming should be carried out in the temperature range 1200–950° C. It should, however, be observed that the strength of the duplex material is low at high temperatures. Hot working should normally be followed by solution annealing.

Due to the high proof strength of duplex material, greater working forces than those required for austenitic steel are usually needed for cold forming of duplex steel. The spring back is relatively high because of the high yield point. Solution annealing is normally recommended after more than 10 % cold deformation.

Machining

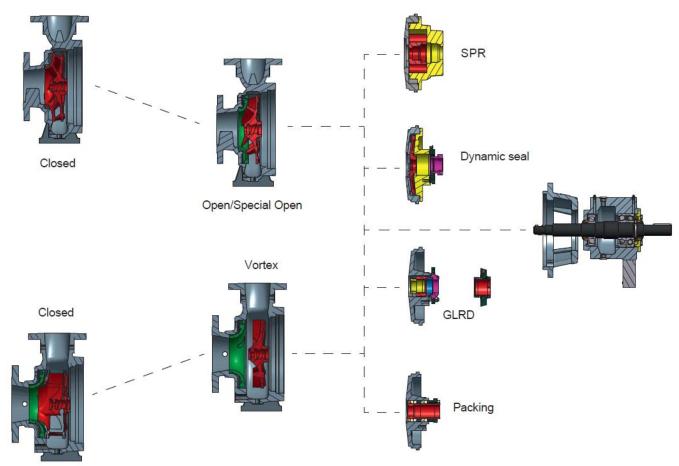
EN 1.4460 is a machinability improved Duplex stainless steel, which has considerably better machinability properties then EN 1.4462 It is not a "stainless free cutting steel" but a high-class norm steel. It is an "easy to machine steel", considered for parts where extensive machining is required.

Welding

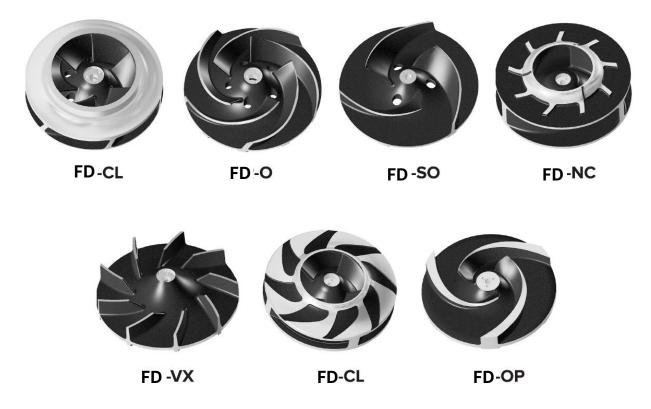
EN 1.4460 possesses good weldability and can be welded in the same manner as austenitic material. Welding should be carried out without preheating and with small weld beads, i.e., with as little heat supply as possible. It is not necessary to use welding consumables of the same steel grade, but also austenitic ones can be used.

Welding of EN 1.4460 and subsequent application in highly corrosive environments could lead to a reduction in corrosion resistance. After annealing at 980° C and quenching in water the corrosion resistance of the weld will be just as high as that of the base material.

Bar Finish


EN 1.4460 is available with a machined or ground surface.

Material Standards


SS-EN 10088-3	Stainless steels- Semifinished products, bars, rods, sections for general Purposes
ASTM A 276/ASME SA-276	Stainless steel bars for general purposes

PUMP CONFIGURATION

Modular Pump Design

Impeller

COUPLING INFORMATION

TYRE - FLEX COUPLINGS

TYRE - FLEX COUPLINGS

TYPE
TFH / T / TO / RST

TYRE - FLEX COUPLING

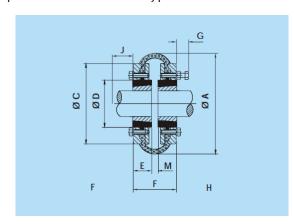
The flexible capabilities of the Tyreflex Coupling help to accommodate angular, parallel and axial misalignments. Parallel Misalignment upto 6 mm.

Angular Misalignment upto 40.

End Float upto 8 mm.

0 Suitable in ambient temp. upto 70 C.

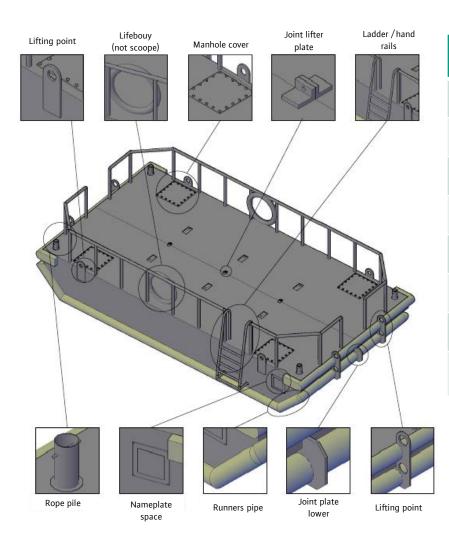
CUSHIONING SHOCK LOADS


Tyreflex being a torsionally soft coupling protects against vibration, impact loads and heavy shocks in the event of sudden load changes.

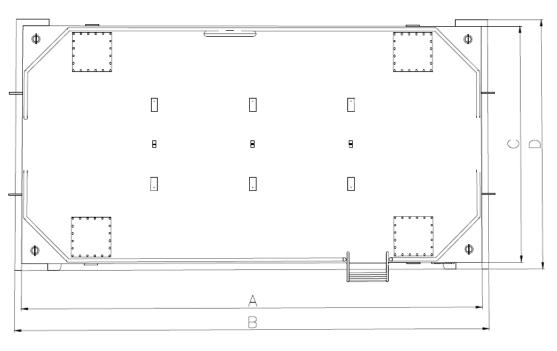
EASE OF ASSEMBLY / DISASSEMBLY

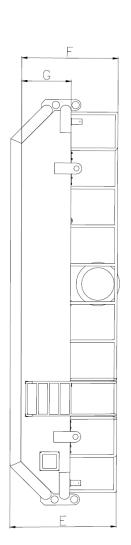
Alignment is quickly checked by placing a straight edge across the outside diameters of the flanges. Installation or replacement of new tyre is achieved without disturbing driver or driven shafts, simply by loosening the clamping screws, placing a new tyre between the flanges and clamping rings and then tightening the clamping screws.

FEATURES

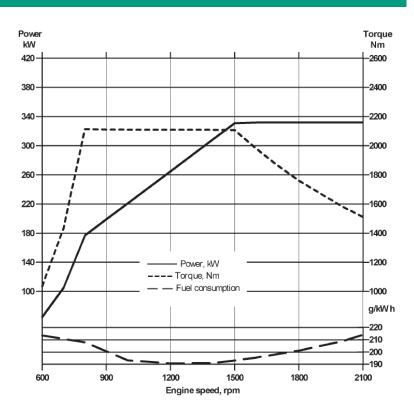

- → Tyre-flex type TFH consists of four parts namely Hub, Clamping ring, Flange & Tyre clamped with a set of screws and washers.
- → These are reversible which permit arranging them in any position FF, HH, HF as shown. Low inventory is the important feature of this type.

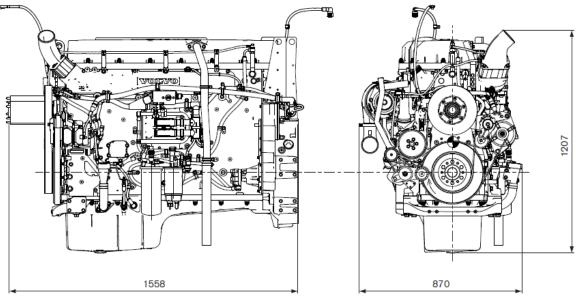
Size	Bush No	• Max	x. Bore	ØΑ	øс	E	ØР	J	F	G	M	Weight kg	Moment of inertia (WR²) kgm²
5.25		Inch	Metric										9
TFH 7	1610	1 5/8	42	197	144	25	76	38	69	17	19	6.8	0.018
TFH 8	2012	2	50	210	167	32	96	42	85	17	21	9.1	0.036
TFH 9	2517	2 1/2	60	235	188	45	110	48	101	19	11	13.2	0.064
TFH 10	2517	2 1/2	60	254	216	45	125	48	102	19	12	18.7	0.110
TFH 11	3020	3	75	279	233	51	140	55	108	22	6	23.5	0.160
TFH 12	3020	3	75	314	264	51	152	55	111	25	9	34.1	0.280


PONTOON INFORMATION


GENERAL DIMENSION DRAWING

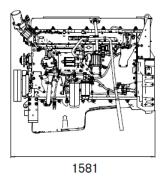
Pontoon Type	FD-100	FD-150	FD-200
Α	7000	7500	9000
В	7200	7700	9200
С	3600	4000	4500
D	3600	4200	4700
Е	1930	1930	2030
F	1730	1730	1630
G	900	900	1000
Weight (kg)	5900	6660	6960

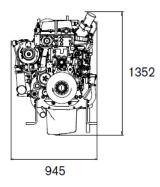

*unit length in mm



VOLVO PENTA INDUSTRIAL ENGINE - TAD1343VE

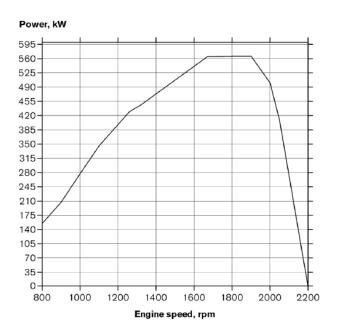
Engine Description	
No of Cylinders	In-line 6
Working Principle	4-stroke
Displacement	12,78 litres
Bore x stroke	131 x 158 mm
Compression ratio	18,1:1
Weight	1237 kg (excl. Oil and coolant)
Engine Interface	CAN SAE J1939
IFN power without fan, at 2100rpm kW (hp)	332 (452)
IFN power with fan Ø 890 mm, at 2100rpm kW (hp)	316 (430)
ICFN power without fan, at 1800rpm kW (hp)	332 (452)
ICFN power with fan Ø 890 mm, at 1800rpm kW (hp)	322 (438)
Torque at 1260 rpm, Nm (lb ft)	2143 (1580)

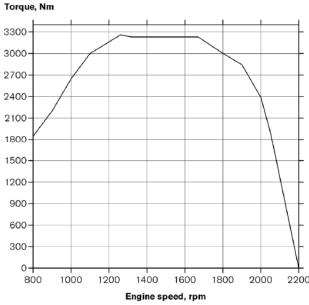

Features

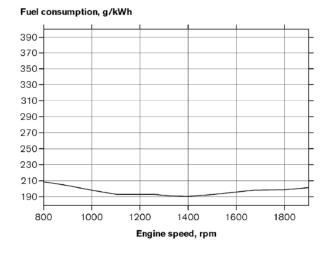

- → High torque
- → Highly efficient cooling system with Air to Air Intercooler
- → High power density
- → Fully electronic with EMS 2
- → Complies with EU Stage II / EPA Tier 2 emissions
- \rightarrow Wide range of optional equipment including visco fan.

VOLVO PENTA INDUSTRIAL ENGINE - TAD1643VE-B

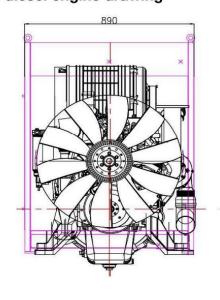
Engine Description	
No of Cylinders	In-line 6
Working Principle	4-stroke
Displacement	16,12 litres
Bore x stroke	144 x 165 mm
Compression ratio	17:1
Weight	1437 kg (excl. Oil and coolant)
IFN power without fan, at 1900rpm kW (hp)	565 (768)
IFN power with fan Ø 890 mm, at 1900rpm kW (hp)	.543 (738)
Mean piston speed at 1900 rpm, m/s (ft/s)	10.5 (34.3)
Effective mean pressure at 1900 rpm, MPa (psi)	2.21 (321)
Max combustion pressure at 1900 rpm, MPa (psi) .	16.7 (2422)
Oil consumption at max rpm. I/h (US gal/h)	0.10 (0.026)

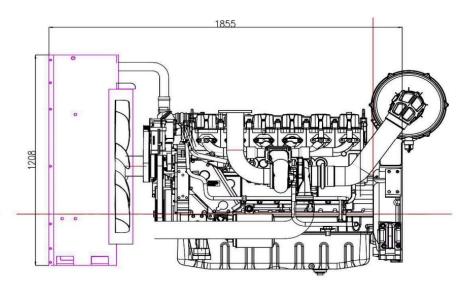






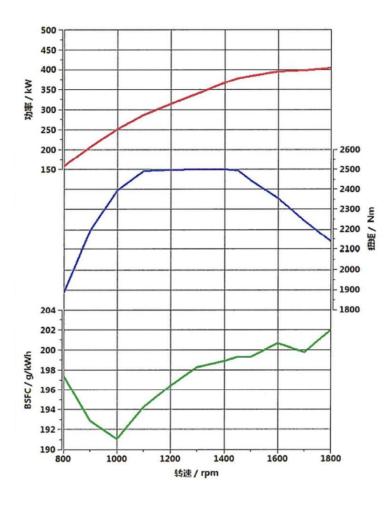
- Proven and straight-forward design built on Volvo Group technology
- → High power and torque already at low engine speed
- → Compact, simple installation and easy to service
- → Exhaust emission reduction system without EGR

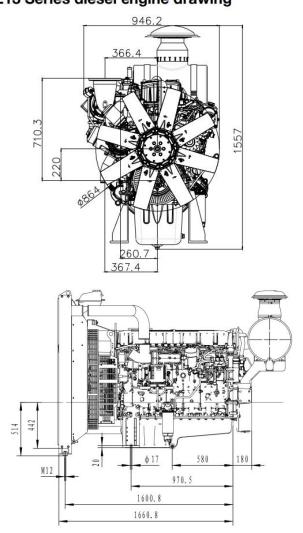



VMAN ENGINE – C07 SERIES

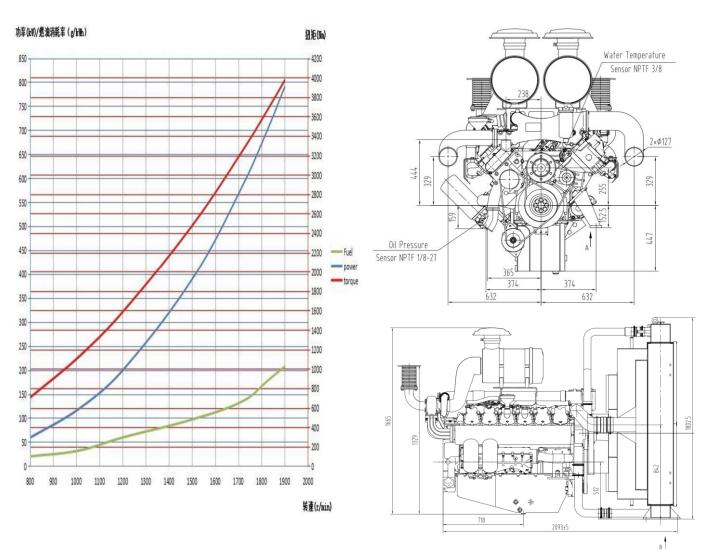
Engine Description	
Prime Power (C07B)	180 kW
Standby Power (C07B)	198 kW
Max RPM	1800 rpm
Bore x stroke	105 x 124 mm
Compression ratio	16:1
Weight	600 kg (excl. Oil and coolant)
Displacement	6,5 L
Rotation {Looking at flywheel}	Counter clockwise {CCW}
Firing order	1-5-3-6-2-4
Injection timing	12°±0.5° BTDC@ 1800 rpm
Dimension {L x W x H}	1330 * 789 *1079 mm
Flywheel housing	SAE 3 #
Flywheel	SAE (11-1/2) #

C10 Series diesel engine drawing




VMAN ENGINE – CE13 SERIES

Engine Description	
Prime Power (CE13B)	415 kW
Standby Power (CE13B)	455 kW
Max RPM	1800 rpm
Bore x stroke	130 x 153 mm
Compression ratio	17:1
Weight	1078 kg (excl. Oil and coolant)
Displacement	12,8 L
Rotation {Looking at flywheel}	Counter clockwise {CCW}
Firing order	1-5-3-6-2-4
Injection timing	10°±1.5° BTDC@ 1800 rpm
Dimension {L x W x H}	1432 * 972 *1204 mm
Flywheel housing	SAE 3 #
Flywheel	14


CE13 Series diesel engine drawing

VMAN ENGINE – D22 SERIES

Engine Description	
Prime Power (D22.2)	718 kW
Standby Power (D22.2)	790 kW
Max RPM	1800 rpm
Bore x stroke	128 x 142 mm
Compression ratio	14,6:1
Weight	1575 kg (excl. Oil and coolant)
Displacement	22 L
Rotation {Looking at flywheel}	Counter clockwise {CCW}
Firing order	1-12-5-8-3-10-6-7-2-11-4- 9
Injection timing	20°±1° BTDC @ 1800 rpm
Dimension {L x W x H}	1717*1389*1288 mm
Flywheel housing	SAE 1 or SAE 0
Flywheel	14 or 18

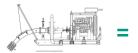
VACUUM PUMP INFORMATION

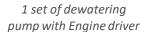
Vacuum pump comes complete with all you require for a vast number of applications.

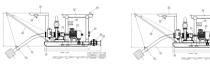
- → Oil separator
- → Gas ballast
- \rightarrow Motor
- → Inlet non-return valve
- → Shipped with oil

Technical Specification

PUMP TYPE	Pumping speed		Ultimate pressure		Motor size				Water vapor handling capability			
Oil sealed rotary vane					1 ph		3 ph		Vapor limit			Motor supply specification
	m²/h	cfm	mbar(a)	Torr	kW	hp	kW	hp	mbar	Torr	kg/h	
GVS 16 A	16	9	0.5	0.4	0.75	1	0.75	1	15	11	0.05	1 - 200-240V 50Hz / 3 - 200-240, 380-415V 50Hz
	19	11	0.5	0.4	0.9	1.2	0.9	1.2	15	11	0.05	1 - 200-240V 60Hz / 3 - 200-240, 380-460V 60Hz
GVS 25 A	25	15	0.5	0.4	0.75	1	0.75	1	15	11	0.08	1 - 220-230V 50Hz / 3 - 200-240, 380-415V 50Hz
	29	17	0.5	0.4	0.9	1.2	0.9	1.2	15	11	0.08	1 - 220-230V 60Hz / 3 - 200-240, 380-460V 60Hz
GVS 40 A	44	26	0.5	0.4	1.1	1.5	1.1	1.5	30	23	0.76	1 - 200-240V 50Hz / 3 - 230, 400V 50Hz / 3 - 220-230,380-400V 50Hz
	53	31	0.5	0.4	1.5	2	1.5	2	30	23	0.76	1 - 200-240V 60Hz / 3 - 230, 400V 60Hz / 3 - 190-240,380-460V 60Hz
Oxygen variant	available (3)										
GVS 60 A	59	35	0.5	0.4	-	-	1.5	2.2	30	23	1	3 - 230, 400V 50Hz / 3 - 220-230, 380-400V 50Hz
	71	42	0.5	0.4	-	-	1.8	3	30	23	1	3 - 230, 460V 60Hz / 3 - 220-230, 380-460V 60Hz
GVS 100 A (1)	98	57	0.5	0.4	-	-	2.2	3	30	23	1.6	3 - 230, 400V 50Hz / 3 - 220-240, 380-415V 50Hz
	117	69	0.5	0.4	-	-	3.5	5	30	23	1.6	3 - 230, 460V 60Hz / 3 - 220-230, 380-460V 60Hz
GVS 150 (1)(2)	151	89	0.1	0.08	-	-	3.3	4.4	11	8	1.4	3 - 230, 400V 50Hz
	181	107	0.1	0.08	-	-	3.7	5	11	8	1.4	3 - 208-230V 60Hz / 3 - 265, 460V 60Hz
GVS 200 A (1)	180	106	0.1	0.08	-	-	4	6	30	23	3.4	3 - 200-240V 50Hz / 3 - 220-240, 380-415V 50Hz / 3 - 400V 50Hz
	220	130	0.1	0.08	-	-	5.5	7.5	30	23	3.4	3 - 440-460V 60Hz / 3 - 208-230, 460V 60Hz / 3 - 200-230, 380-460V 60Hz
GVS 300 A (1)	280	165	0.1	0.08	-	-	5.5	7.5	10	8	1.3	3 - 200-240V 50Hz / 3 - 220-240, 380-415V 50Hz / 3 - 400V 50Hz
	340	200	0.1	0.08	-	-	6.3	8.6	10	8	1.3	3 - 440-460V 60Hz / 3 - 208-230, 460V 60Hz / 3 - 200-230, 380-460V 60Hz
GVS 470 A	470	277	0.1	0.08	-	-	9.2	12	15	11	5	3 - 400V 50Hz / 3 - 200-240, 380-415 50Hz
	570	366	0.1	0.08	-	-	11	15	15	11	5	3 - 230, 440-480V 60Hz / 3 - 200-230, 380- 460V 60Hz
GVS 630 A	700	412	0.1	0.08	-	-	15	20	40	30	17	3 - 400V 50Hz / 3 - 200-240, 380-415 50Hz
	840	494	0.1	0.08	-	-	18.5	25	40	30	17	3 - 230, 440-480V 60Hz / 3 - 200-230, 380-460V 60Hz


900.000 m³ Wastewater had been pumped for Dewatering Applications


Thanks to Excellent Technology from Wilo



PT Adaro Energy Tbk is second largest coal miner in Indonesia. Through PT Adaro Tirta Sarana, as their Contractor to handle Dewatering process inside Adaro mining site, we supplied 9 Dewatering pumpsets complete with pump system infrastructure such as VSD control panel, pipe, and floating bridge.

Energy Cost

2 sets of dewatering pumps with motor driver

*Depends on electrical cost, fuel cost and working hour on every location

Smart Dewatering Pump

We put our best control for your requirements

- → Motor temperature sensor for motor safety
- → Level and dry sensor for vacuum tank and vacuum pump automation
- → Flow meter for performance parameter
- → Pressure transmitter for dry running parameter

Pumpset Dewatering Control Room Head Office

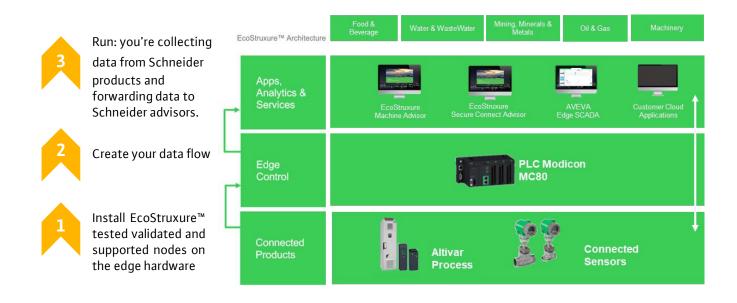
Seamless integration utilizing energy-saving Altivar drive solution

Life Is On

Schneider Electric

Energy-saving Altivar drive

- → Up to 30% energy saving when on standby due to the innovative "stop & go" operation without additional costs
- → Monitor energy consumption, energy based KPIs with 95% accuracy
- → Monitor pump operation state and efficiency (BEP) through Data logging and graphic display of the power consumption



Seamless integration through Eco Ftruxure

The Ecostruxure(tm) Architecture is to facilitate end-to-end connectivity between Ecostruxure(tm) OT devices and Ecostruxure(tm) machine advisors, tested, validated and supported nodes on the edge hardware.

We use Node-RED as the open-source technology to deliver basic connectivity.

Wilo services for you

System Consulting

- → On-site trainings with professional pump and system experts from Wilo
- → Several training sites
- → Practically experienced experts
- → Topics of highest quality and practical relevance
- → Personal exchange of experiences between the participants

Commissioning

- → Installation checks
- → Setting of optimised system parameters
- → Test run
- → Checked and recorded with standardised check list
- → Practical introduction to the operation

Maintenance

- → Professional pump and system inspection, maintenance and repair by Wilo pump and system experts
- → Maintenance and refit
- → Standardised maintenance options and packages
- → Individual maintenance solutions and full service contracts
- → All maintenance work recorded in a check list

On-site repair

- → Check of failure cause and system conditions
- → Repair with genuine Wilo spare parts
- \rightarrow Corrective maintenance of failure cause
- \rightarrow Electric and hydraulic test run
- → Repair recorded in service report

Inhouse-repair

- → Check of failure cause
- → Repair or replacement offer
- → Repair exclusively with genuine Wilo spare parts
- → Optical preparation
- → Electric and hydraulic test run
- → Repair and test recorded in service report

Spare parts

- → Genuine spare parts in proven Wilo quality
- → Customised spare parts stocks around the world
- → Delivery capability of more than 92 %
- → All popular spare parts available within 24 hours
- → Individual advice on spare part selection and stock solution

Commissioning

Maintenance

On-site-repair

Spare parts

Head Office

PT Wilo Pumps Indonesia Altira Business Park, Block A-01 Jalan Yos Sudarso Kav. 85, Sunter Jaya Jakarta, 14350, Indonesia T+62-21-2188-2328/29/30 www.wilo.co.id

Warehouse and After Sales Service

Jl. Agung Timur 9 Block N3 No.5, RT.10/RW.11, Sunter Jaya Jakarta, 14350, Indonesia T +62-21-6509-036

Representative Office of South Sumatera

Jl. Siaran No.17 Sako, Kota Palembang Sumatera Selatan 30961 +62-811-1712-656

Representative Office of East Java

Jl. Kahuripan Nirwana Monroe No.38 Sidoarjo, Jawa Timur 61228 +62-812-5254-4696

Representative Office of South Sulawesi

Jl. Cendrawasih No.497, Karang Anyar, Kec. Mamajang, Kota Makassar Sulawesi Selatan 90126 T +62-411-850-125