

Wilo Mather and Platt – Horizontal Split Case Pumps

en Installation and operating instructions

Disclaimer

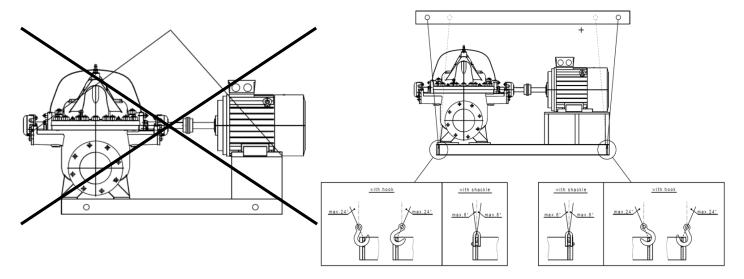
Wilo Mather and Platt is very grateful for your interest in its products. The basic objective of this document is to provide instructions for maintaining and operating Wilo Mather and Platt Horizontal Split Case pumps. Instructions are complied for the person having a working knowledge of Horizontal Split case pumps and the pumps shall be installed under expert supervision and quidance.

With this document Wilo Mather and Platt does not accept any liability for inaccurate installation, operation or maintenance of the product at site. The authorities that install and maintain the pump shall be responsible for hassle free installation operation or maintenance of the product.

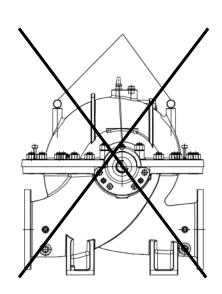
This document is prepared with at most care to ensure correct and accurate information, enabling the user to have trouble free installation and operational support. However, there can be few areas for improvement to make this document error free.

We welcome your valuable suggestions to make this document complete in all respects.

WILO Mather and Platt Pumps Pvt. Ltd.


Mumbai-Pune Road, Chinchwad, Pune- 411 019, Maharashtra (India) Tel: +91 20 27442100/1/2/3/4,

Toll Fee Service: 1–800–266–8866


Fax: +91 2027442111 service.in@wilo.com

www.wilo.in

Fig.1:

Fig.2:

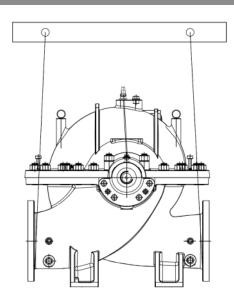
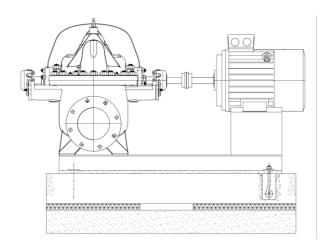
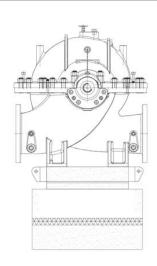
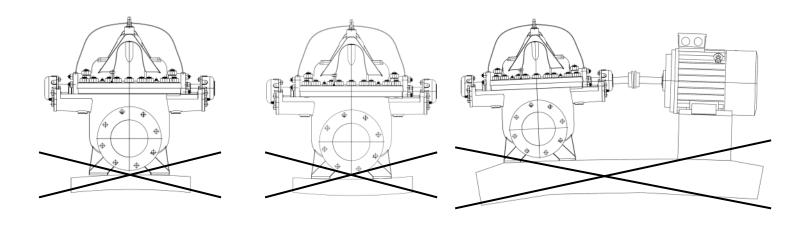
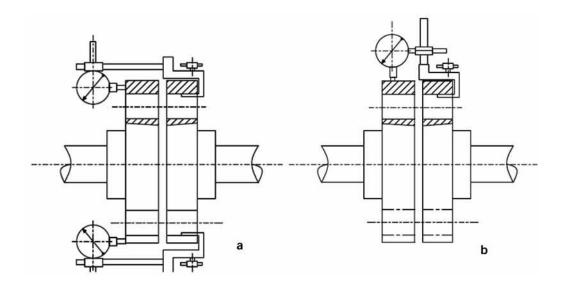





Fig.3



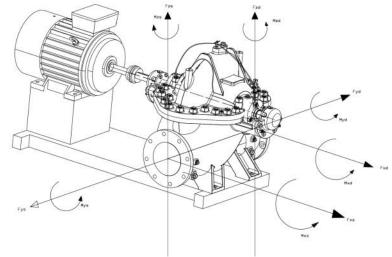
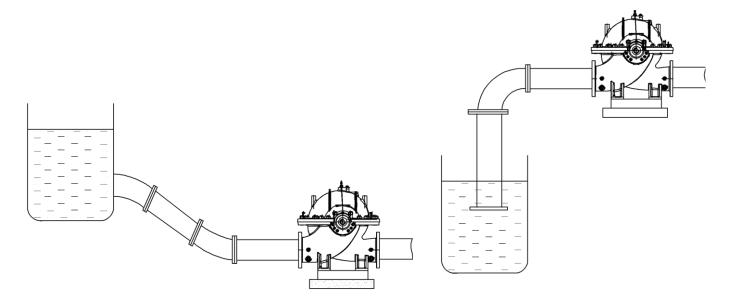
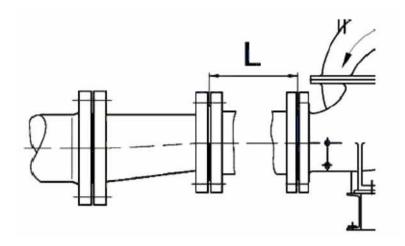

Fig. 4

Fig.5:


Fig.6:


2

Installation and operating instructions Wilo Mather and Platt – HSC pumps

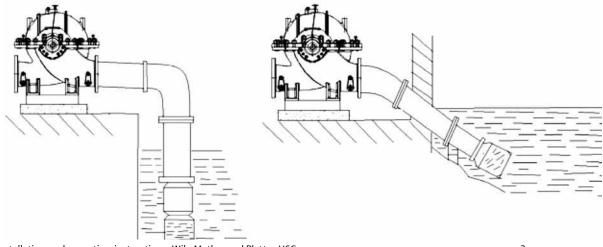

Fig.7:

Fig.8.1:

Fig.8.2:

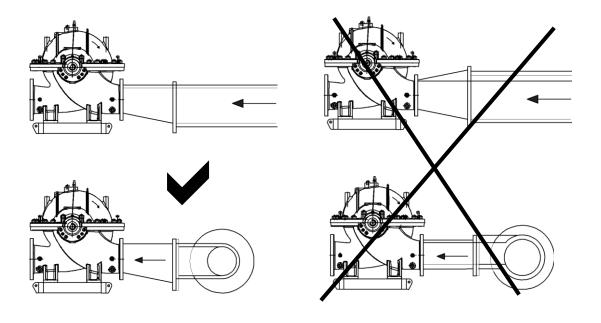


Fig.8.4:

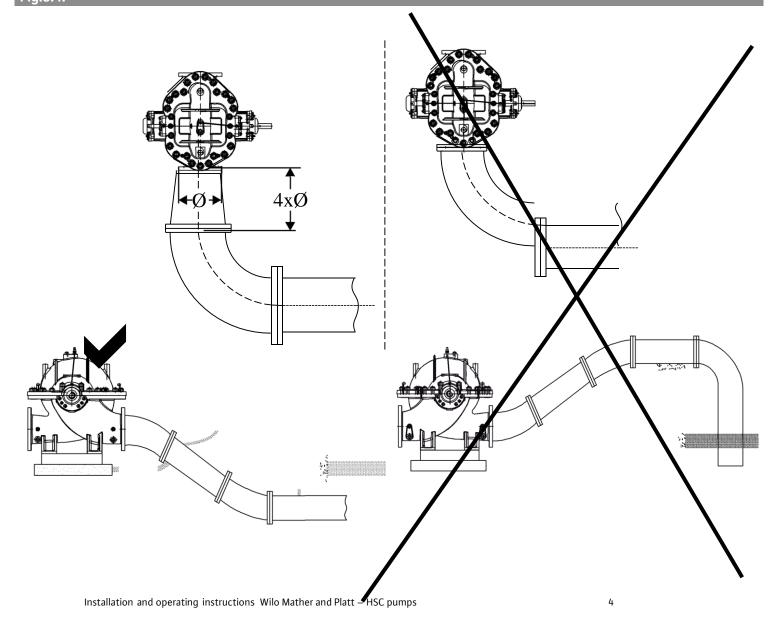
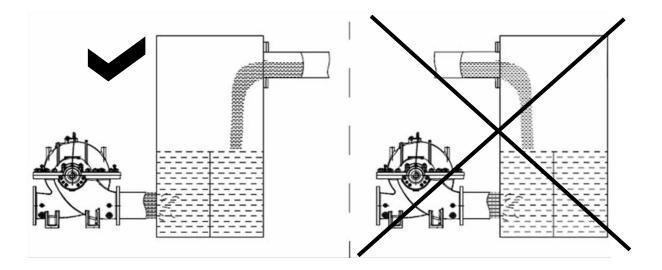
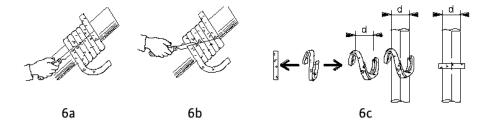
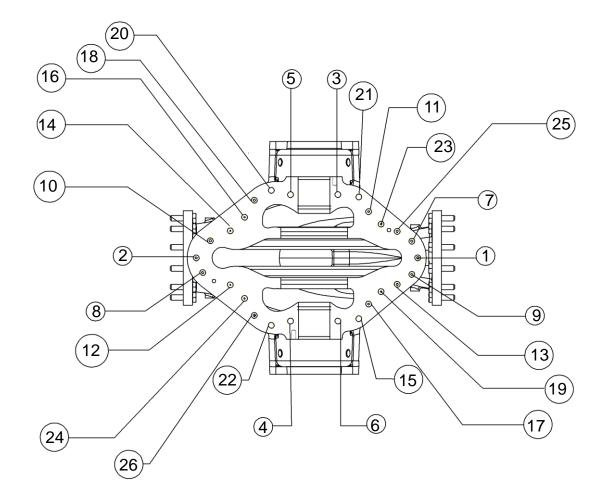





Fig.8.5:

Fig.9:

1	General information	8
2	Safety	8
2.1	Designation of information in the operating instructions	8
2.2	Personnel qualifications	8
2.3	Danger in event of non-observance of the safety instructions	8
2.4	Safety consciousness on the job	8
2.5	Safety instructions for the operator	8
2.6	Safety instructions for installation and maintenance work	
2.7	Unauthorized modification and manufacture of spare parts	
2.8	Improper use	
2.9	Safety & control devices	
3	Transport and interim storage (fig. 1)	9
3.1	Handling	
3.2	Delivery	10
3.3	Storage	10
3.4	Pump returning back to the supplier	10
4	Intended use	10
5	Product information	
5.1	Data plate	
5.2	Type key	
5.3	General description	
5.4	Scope of delivery	
5.5	Accessories	
6	Description and function	12
6.1	Description of the product	
7	Installation and electrical connection (Motor / pump coupling system)	16
7.1	Installation of bare shaft pump	
7.2	Installation of the complete pump set	17
8	Commissioning	21
8.1	Cleaning prior to start	
8.2	Filling and venting	22
8.3	Starting the pump	22
9	Maintenance	
9.1	Routine maintenance and frequency of inspection	25
9.2	Overhaul maintenance	
9.3	Disassembling the pump	
9.4	Examination of Internal Components	
9.5	Reassembling the pump	
9.6	Recommended spare parts	35
10	Faults, causes and remedies	37
11	Decommissioning and recycling	38
12	Annexure	
	Annexure 1	
	Annexure 2	44

1 General information

About this document

The language of the original operating instructions is English. All other languages of these instructions are translations of the original operating instructions.

These installation and operating instructions are an integral part of the product. They must be kept readily available at the place where the product is installed. Strict adherence to these instructions is a precondition for the proper use and correct operation of the product.

These installation and operating instructions correspond to the relevant version of the product and the underlying safety standards valid at the time of going to print.

Supplied pump will operate trouble free and satisfactorily on the condition that, it is installed with due care and maintained properly. For hassle free operating life, it is recommended that the pump should operate under specified "Operating conditions". Pump operating

conditions are mentioned on the "Nameplate"

affixed to the pump.

If operating parameters deviate from the specified parameters as on the "Nameplate", please contact manufacturer."

2 Safety

These operating instructions contain basic information which must be adhered to during installation and operation. Forthis reason, these operating instructions must, without fail, be read by the service technician and the responsible operator before installation and commissioning. The machine operator list must be filled out completely. By signing this list, all persons working on or with the product confirms that they have received, read and understood this operating & maintenance manual. It is not only the general safety instructions listed under the main point "safety" that must be adhered to but also the special safety instructions with danger symbols included under the following main points.

2.1 Designation of information in the operating instructions

Symbols:

General danger symbol

Danger due to electrical voltage

NOTE: ...

Signal words:

DANGER!

Acutely dangerous situation.

Non-observance results in death or the most serious of injuries.

WARNING!

The user can suffer (serious) injuries. "Warning" implies that (serious) injury to persons is probable if this information is disregarded.

CAUTION!

There is a risk of damaging the pump/installation. "Caution" implies that damage to the product is likely if the information is disregarded.

NOTE:

Useful information on using the product. It also draws attention to possible problems.

2.2 Personnel qualifications

The installation personnel must have the appropriate qualification for this work.

2.3 Danger in event of non-observance of the safety instructions

Non-observance of the safety instructions can result in risk of injury to persons and damage to product/installation. Non-observance of the safety instructions can result in the loss of any claims to damages. In detail, non-observance can, for example, result in the following risks:

- Failure of important product/installation functions
- Failure of required maintenance and repair procedures
- Danger to persons from electrical, mechanical and bacteriological influences
- Property damage

2.4 Safety consciousness on the job

The safety instructions included in these installation and operating instructions, the existing national regulations for accident prevention together with any internal working, operating and safety regulations of the operator are to be complied with.

2.5 Safety instructions for the operator

This appliance is not intended for use by persons (including children) with reduced physical, sensory or mental capabilities, or lack of experience and knowledge, unless they have been given supervision or instruction concerning use of the appliance by a person responsible for their safety. Children should be supervised to ensure that they do not play with the appliance.

- If hot or cold components on the product/the unit lead to hazards, local measures must be taken to guard them against touching.
- Guards protecting against touching moving components (such as the coupling) must not be removed whilst the product is in operation.
- Leakages (e.g. from the shaft seals) of hazardous fluids (which are explosive, toxic or hot) must be led away so that no danger to persons or to the environment arises. National statutory provisions are to be complied with.

- Highly flammable materials are always to be kept at a safe distance from the product.
- Danger from electrical current must be eliminated. Local directives or general directives [e.g. IEC, VDE etc.] and local power supply companies must be adhered to.
- Depending on the type, size and capacity (kW), the products produce a sound pressure up to 75 dB (A) to 110 dB (A).
- The actual sound pressure, however, depends on several factors. These include, for example, type of prime mover, installation type; fastening of accessories and pipeline, operating site condition, background noise, etc.
- Once the product has been installed, We recommend that the operator makes additional measurements under all operating conditions

2.6 Safety instructions for installation and maintenance work

The operator must ensure that all installation and maintenance work is carried out by authorized and qualified personnel, who are sufficiently informed from their own detailed study of the operating instructions.

Work on the product/unit must only be carried out when at a standstill. It is mandatory that the procedure described in the installation and operating instructions for shutting down the product/unit be complied with.

Immediately on conclusion of the work, all safety

Immediately on conclusion of the work, all safety and protective devices must be put back in position and/or re-commissioned.

2.7 Unauthorized modification and manufacture of spare parts

Unauthorized modification and manufacture of spare parts will impair the safety of the product/ personnel and will make void the manufacturer's declarations regarding safety. Modifications to the product are only permissible after consultation with the manufacturer. Original spare parts and accessories authorized by the manufacturer ensure safety. The use of other parts will absolve us of liability for consequential events.

2.8 Improper use

The operating safety of the supplied product only guaranteed for conventional use in accordance with Section 4 of the operating instructions. The limit values must on no account fall under or exceed those specified in the catalogue/data sheet.

2.9 Safety & control devices

Direct controls are applicable when the pump is supplied along with motor/panels. When motor/panel is in end user's scope of supply, it is advised to go for CE approved motors /panels. Environmental safety
Disposal of any unwanted/scrap material should be disposed in appropriate way so as not to cause any harm to the environment. No hazardous material is used in Wilo Mather and Platt SCP pumps.

NOTE

To avoid ambiguity in the use of the word "replace" the words "replace" and "renew" are used in this manual in the following context: Replace — To put back, in its existing state, a part or component that has previously been removed. Renew — To substitute a new part of component for a worn or damaged one.

3 Transport and interim storage (fig. 1)

immediately check the pump and transport packaging for damage in transit upon receipt. Take the necessary steps within the period's defined by the transport company in the event of damage in transit.

DANGER! Risk of getting crushed!
The installation or removal of the product must not be performed by one person alone.

Measures should be taken to bar persons from standing beneath a suspended load. Furthermore, it is also prohibited to move suspended loads over exposed workplaces where people are present. The fastening devices should be adapted to the conditions at hand (weather, hooking system, load, etc.) Use suitable fastening devices to handle the weight of the product.

CAUTION! Risk of damage to the pump! Risk of damage due to improper handling during transport and storage.

The pump should be protected against humidity, frost and mechanical damage during transport and interim storage.

3.1 Handling

CAUTION! Risk of damage to the pump! Risk of falling!

Pumps should never be lifted with slings engaged below the bearing housing. Eyebolts on pump top casing are only for lifting top casing during maintenance. Do not lift complete pump with the eyebolts. Safe working load of wire ropes reduces with increase in included angle. Never put down or pick up the product when it is not secured. Tilting of the product should be avoided at all costs.

Only suitable lifting gear and load carrying equipment with valid test certificates and adequate lifting capacity for the loads involved (such as belts/ wire ropes/slings) should be used for lifting & transporting the product. If chains are used, they

should be secured against slipping along with protective cover to prevent damage to the product, paint and/or injury to personnel. When lifting the pump in combination with the bedplate, the lifting tackle should be attached to the lifting lugs provided on the base plate side member. The angle of the lifting ropes should not exceed 8° if shackles are used and 24° if hooks are used. To lift the pump the lifting slings should pass beneath the pump body at suction and delivery flanges (see lifting diagrams – see also general safety Information, chapter 2). These must have sufficient load bearing capacity to ensure that the product can be transported safely. Refer figure 1 and 2

3.2 Delivery

On arrival, the delivered items must be inspected for damage and a check made that all parts are present. If any parts are damaged or missing, the transport company or the manufacturer must be informed on the day of delivery. Any claim made at a later date will be deemed invalid. Damage to parts must be noted on the delivery or freight documentation.

3.3 Storage

3.3.1 Short-term storage (less than 3 month)

The equipments as shipped have adequate protection for short-term storage in a covered, dry and ventilated location at the job site prior to installation.

If the pump is not installed immediately after deli-very, it must be stored in a dry and clean place with sufficient ventilation, no vibration, no freezing and the temperature variations must be smooth. Bearings and couplings must be protected against sand, dust and foreign bodies. To avoid corrosion and jamming, please lubricate the pump and make turn the rotating elements for several turns at least once a week. Prepacked desiccants may be used to absorb moisture & keep the pump dry. It must be removed before putting the pump on operation.

3.3.2 Long-term storage (more than 3 month)

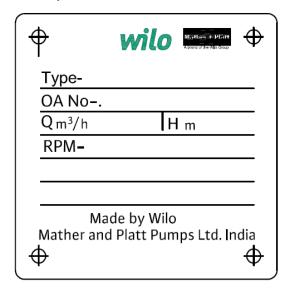
If the equipment will be subject to extended storage condition prior to installation, then the manufacturer must be informed about storage duration, so that special protection can be recommended.

- Place the SCP pumps horizontally on firm foundation and secure it against falling.
- The machine must be protected from direct sun- light, heat, dust, and frost.
- The rotors or propellers must be turned at regular intervals. This prevents the bearing from locking and the film of lubricant on the mechanical shaft seal is renewed.
- For mechanical seal, we recommend: relative air humidity below 65%, temperature between 15°C and 25°C. Direct exposure of the mechanical seal to heat (sun, heating) as well as to ozone, present or produced by ultraviolet light (halogen or fluorescent lamps), must be avoided because of the risk of embrittlement of elastomeric materials.

3.4 Pump returning back to the supplier

Products, which are delivered back to the plant, must be clean and correctly packaged. In this con-text, clean means that impurities have been removed and decontaminated if it has been used with materials, which are hazardous to health.

The packaging must protect the product against damage.


CAUTION! Guarantee not applicable!
Products, which are not suitably packaged for delivery back, are no longer covered by guaran—tee!

4 Intended use

The pump supplied is intended for specific fluid. Refer pump data sheet and order confirmation. For any change in pumped fluid refer Wilo Mather and Platt beforehand. Horizontal split Case pumps are used in water supply, water—circulating systems, injection water, spray pond, air—conditioning, water treatment, Sprinkler & drip irrigation, fire fighting, juices etc. If the operating conditions are different of the specifications given in the order, (i.e. type of liquid, temperature or duty point), the end user must ask a written agreement to Wilo Mather and Platt on the new operating conditions before starting the pump.

5 Product information

5.1 Data plate

5.2 Type key

SCP20	SCP200/320HA-110/4/T4-R1/E0					
SCP	Name of the range					
200	Discharge flange nominal diameter					
	in mm					
320	Nominal diameter of the impeller in mm					
HA	Type of Hydraulic :					
	– HA = Standard type version A					
	– HB = Standard type version B					
	HS = Single suction impeller					
	– DV = Double volute					
	– DS = Double stage					
110	Motor power rating in kW					
4	Number of poles					
T4	Voltage Three phases 400V					
R1	Material configuration: Casing in cast					
	iron, Bronze impeller, Stainless steel					
	shaft (RoHS compliant)					
E0	Mechanical seal material configuration					
	Carbon / SiC EPDM type AQ1EGG					

5.3 General description

Limits of usage of the standard range

The technical features of the product have been described in the offer made for this product, especially the fluid compatibility. Please refer to this:

Property	Value	Remarks
Speed	2900, 1450, 980 1/min	Model dependent
Discharge nominal diameters DN	50 up to 400	
Flange standard	PN 16/25	ISO 7005–2, as needed
Limit of fluid temperature (min. /max.)		
– Mechanical seal version [°C]	-8 up to +120	
Gland packing version [°C]	-8 up to +105	
Limits of ambient temperature (min. /max.) [°C]	-16 up to +40	other on request
Ambient humidity	< 90 %	other on request
Max. operating pressure	16 bar, generally	25 for some models
Motor insulation class	F	other on request
Motor protection level	IP 55	
Electrical protection for motor	-	required in place (in accord- ance with local regulation)
Acoustic pressure level, (In accordance with motor performances)		Refer to the data plate on the motor on intechnical leaflets
Standard fluid allowed	Central heating liquid in accordance with VDI 2035, cooling water. Cold water Mixture water/glycol up to 40 % of volume. Temp ≤ 40 °C for concentrations between 20% and 40% vol. Contact WILO Mather and Platt for all other fluids	Standard version Standard version Only for special version
Electrical connections	3~230V, 50Hz (≤4kW) 3~400V, 50Hz (≥5,5kW)	Other frequency, voltages, please contact WILO

5.4 Scope of delivery

Pump can be delivered

- As a complete pump set including electrical motor, base plate, coupling and coupling guard;
- Either without motor or
- As bare shaft pump without base plate.

5.5 Accessories

- Companion Flange
- Foundation bolts
- Shims

6 Description and function

6.1 Description of the product

Split casing pumps are either single or two stages. They are of relatively simple construction, the casing being split along the pump axis so that normal maintenance work can be carried out without disturbing the position of either the pumping set or pipe work.

6.1.1 Casing

The pump casing is of volute form, cast in halves, which are bolted together along the pump axis. Gasket paper is provided between the split flanges of top and bottom casing. For accurate location casing halves, bearing housings / brackets etc. are located with dowel pins. The suction and delivery branches of the pump are cast integral with bottom half casing, which also incorporate the mounting feet. Holes are tapped on suction and delivery branches for connecting the pressure gauges and providing casing drain. Bores of bottom half casing are grooved to provide location for stuffing box bushes. The top half casing carries connections for liquid seal for both sides. Air vent cock is fitted on the top and also priming hole is also provided on the top of casing.

Conn	ection Details										
No.	Pump	CG	PG	PM	AC	CDS	CDD	CD	GD	VG	TG
1	SCP 50-220 HA	1/4"	1/4"	1/4"	1/4"	1/4"	1/4"	_	1/4"	M8	
2	SCP 50-180 HA	1/4"	1/4"	3/8"	3/8"	1/4"	1/4"	_	3/4"	M8	
3	SCP 50-340 HA	3/8"	3/8"	1/2"	3/8"	1/2"	1/2"	_	3/4"	M8	
4	SCP 50-340 DS	3/8"	3/8"	1/2"	3/8"	3/8"	3/8"	3/8"	3/4"	M8	
5	SCP 65-390 HS	3/8"	3/8"	1/2"	3/8"	1/2"	1/2"	_	3/4"	M8	
6	SCP 80-230 HA	3/8"	3/8"	1/2"	3/8"	1/2"	1/2"	_	3/4"	M8	_
7	SCP 80-200 HA	3/8"	3/8"	1/2"	3/8"	1/2"	1/2"	_	3/4"	M8	
8	SCP 80-380 DS	3/8"	3/8"	1/2"	3/8"	3/8"	3/8"	1/2"	3/4"	M8	
9	SCP 80-340 HA	3/8"	3/8"	1/2"	3/8"	1/2"	1/2"	_	3/4"	M8	
10	SCP 80-360 DS	3/8"	3/8"	3/4"	3/8"	1/2"	1/2"	_	1/2"	M8	
11	SCP 100-270 HA	3/8"	3/8"	1/2"	3/8"	1/2"	1/2"	_	3/4"	M8	M8
12	SCP 100-280 HA	3/8"	3/8"	1/2"	3/8"	1/2"	1/2"	_	3/4"	M8	M8
13	SCP 100-360 HA	3/8"	3/8"	1/2"	3/8"	1/2"	1/2"	_	3/4"	M8	M8
14	SCP 100-400 HA	3/8"	3/8"	1/2"	3/8"	1/2"	1/2"	_	3/4"	M8	M8
15	SCP 100-410 DS	3/8"	3/8"	3/4"	3/8"	1/2"	1/2"	1/2"	1/2"	M8	M8
16	SCP 125-290 HA	3/8"	3/8"	1/2"	3/8"	1/2"	1/2"	_	3/4"	M8	M8
17	SCP 125-330 HA	3/8"	3/8"	1/2"	3/8"	1/2"	1/2"	_	3/4"	M8	M8
18	SCP 125-440 HA	3/8"	3/8"	1/2"	3/8"	1/2"	1/2"	_	3/4"	M8	M8
19	SCP 125-470 HA	3/8"	3/8"	3/4"	3/8"	3/4"	3/4"	_	3/4"	M8	M8
20	SCP 125-460 DS	3/8"	3/8"	3/4"	3/8"	1/2"	1/2"	_	3/4"	M8	M8
21	SCP 150-290 HA	3/8"	3/8"	1"	3/8"	1/2"	1/2"	_	3/4"	M8	M8
22	SCP 150-390 HA	3/8"	3/8"	1/2"	3/8"	3/4"	3/4"	_	3/4"	M8	M8
23	SCP 150-350 HA	3/8"	3/8"	3/4"	3/8"	3/4"	3/4"	_	3/4"	M8	M8
24	SCP 150-450 HA	3/8"	3/8"	1/2"	3/8"	3/4"	3/4"	_	3/4"	M8	M8
25	SCP 150-580 HA	3/8"	3/8"	1"	3/8"	1/2"	1/2"	_	3/4"	M8	M8
26	SCP 150-530 HA	3/8"	3/8"	1"	3/8"	3/4"	3/4"	_	3/4"	M8	M8
27	SCP 150-460 DS	1/2"	1/2"	3/4"	3/8"	1/2"	1/2"	1/2"	1/2"	M8	M8
28	SCP 200-310 HA	3/8"	3/8"	1/2"	3/8"	3/4"	3/4"	_	3/4"	M8	M8
29	SCP 200-320 HA	3/8"	3/8"	3/4"	3/8"	3/4"	3/4"	_	3/4"	M8	M8
30	SCP 200-370 HA	3/8"	3/8"	3/4"	3/8"	3/4"	3/4"	_	3/4"	M8	M8
31	SCP 200-360 HB	3/8"	3/8"	3/4"	3/8"	3/4"	3/4"	_	3/4"	M8	M8
32	SCP 200-390 HA	3/8"	3/8"	1"	3/8"	3/4"	3/4"	_	3/4"	M8	M8
33	SCP 200-440 HA	3/8"	3/8"	1"	3/8"	3/4"	3/4"	_	3/4"	M8	M8
34	SCP 200-460 HA	3/8"	3/8"	1"	3/8"	3/4"	3/4"	_	3/4"	M8	M8
35	SCP 200-550 HA	3/8"	3/8"	1"	3/8"	1/2"	1/2"	_	3/4"	M8	M8
36	SCP 200-480 HA	3/8"	3/8"	1"	3/8"	1/2"	1/2"	_	3/4"	M8	M8
37	SCP 200-560 HA	3/8"	3/8"	1"	3/8"	1/2"	1/2"	_	3/4"	М8	M8
38	SCP 200-660 DV	3/8"	3/8"	1"	3/8"	1"	1"	_	1"	M8	M8
39	SCP 250-250 HA	3/8"	3/8"	1/2"	3/8"	1/2"	1/2"	_	3/4"	М8	M8
40	SCP 250-390 HA	3/8"	3/8"	1"	3/8"	3/4"	3/4v	_	3/4"	M8	M8
41	SCP 250-360 HA	3/8"	3/8"	1"	3/8"	3/4"	3/4"	_	3/4"	M8	M8
42	SCP 250-450 HA	3/8"	3/8"	1"	3/8"	1/2"	1/2"	_	1"	M8	M8
43	SCP 250-570 HA	3/8"	3/8"	1"	3/8"	1/2"	1/2"	_	1"	M8	M8
44	SCP 250-700 DV	3/8"	3/8"	1"	3/8"	1"	1"	_	1- 1/4"	M8	M8
45	SCP 250-740 DV	3/8"	3/8"	1"	3/8"	1"	1"	_	1- 1/4"	M8	M8
46	SCP 300-330 HB	3/8"	3/8"	1"	3/8"	3/4"	3/4"	_	3/4"	M8	M8
47	SCP 300-380 HA	3/8"	3/8"	1"	3/8"	1"	1"	_	3/4"	M8	M8
48	SCP 300-400 HA	3/8"	3/8"	1"	3/8"	3/4"	3/4"	_	3/4"	M8	M8
49	SCP 300-490 HA	3/8"	3/8"	1"	3/8"	1"	1"	_	1"	M8	M8
50	SCP 300-570 HA	3/8"	3/8"	1"	3/8"	1"	1"	-	1"	М8	M8
51	SCP 300-660 DV	3/8"	3/8"	1-1/2	" 3/8"	1"	1"	_	1"	M8	M8
52	SCP 350-500 HA	3/8"	3/8"	1"	3/8"	1"	1"	_	1"	M8	М8
53	SCP 350-470 HA	3/8"	3/8"	1"	3/8"	1"	1"	-	1"	М8	M8
54	SCP 400-540 HA	3/8"	3/8"	1"	3/8"	1"	1"	_	1"	М8	M8
55	SCP 400-480 HA	3/8"	3/8"	1"	3/8"	1"	1"	-	1"	М8	M8
56	SCP 400-550 HA	3/8"	3/8"	1"	3/8"	1"	1"		1"	M8	M8
57	SCP 400-710 HA	3/8"	3/8"	1"	3/8"	1"	1"	_	1-1/4"	M8	M8
58	SCP 400-660 DV	1/2"	1/2"	1"	3/""	1"	1"		1"	М8	M8

CG: Compound Ground; PG: Pressure Gauge; PM: Priming; AC: Air Cock; CDS: Casing Drain (Suction); CDD: Casing Drain (Delivery); CD: Casing Drain; GD: Gland Drain; VG: Vibration Gauge; TG: Temperature Gauge

6.1.2 Neck ring

To prevent the entry of pump liquid from delivery side of impeller to suction side, neck ring is provideed. Fine running clearance is provided between neck ring and impeller neck. Periodic restoration of this clearance is necessary for satisfactory performance of the pump. For two stage pumps these neckrings are located in the bottom half of the casing by half-spigot (Tung and groove) and its rotation is restricted by flat face of the top casing. For rest of the single stage pumps plain neck rings with neck ring pins in bottom casing for locking are used. The neck ring pin is press fitted in the neck ring.

6.1.3 Sealing system

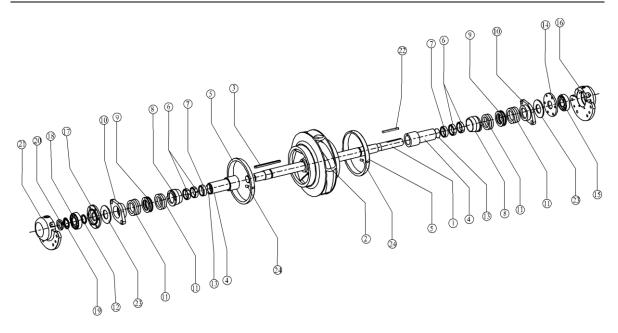
To prevent leakage along the shaft at the point of

emergence from the pump casing, gland packing or mechanical seals may be fitted in the stuffing box situated at each end of the casing.

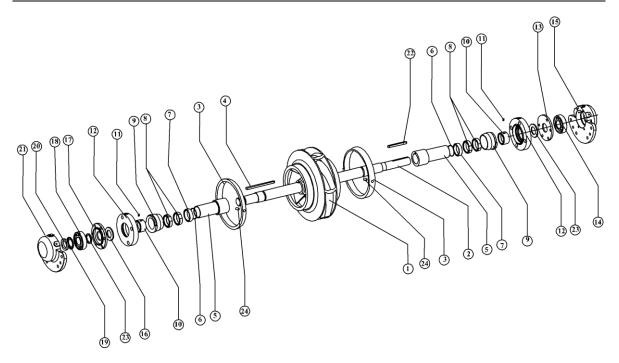
Gland Pack

For SCP pumps plaited cotton impregnated with oil and colloidal graphite is used.

Mechanical Seal


For SCP pumps Burgmann made MG1 or M7 mechanical seals are used.

6.1.4 Rotating


element

The rotating element of SCP pump consist of following parts

For glar	nd pack version pumps		
No.	Part description	No.	Part description
1	Shaft	13	O-ring
2	Impeller	14	Bearing end cover (D.E.)
3	Impeller key	15	Bearing (D.E.)
4	Sleeve	16	Bearing housing (D.E.)
5	Neck ring	17	Bearing end cover (N.D.E.)
6	Sleeve nut	18	Bearing (N.D.E.)
7	Spacer Sleeve	19	Lock washer
8	Stuffing box bush	20	Lock nut
9	Logging ring	21	Bearing housing (N.D.E.)
10	Gland	22	Coupling key
11	Gland packing	23	Water thrower
12	Thrust collar	24	Neck ring pin

For mech	For mechanical seal version pumps						
No.	Part description	No.	Part description				
1	Impeller	13	Bearing end cover (D.E.)				
2	Shaft	14	Bearing (D.E.)				
3	Neck ring	15	Bearing housing (D.E.)				
4	Impeller key	16	Thrust collar				
5	Sleeve	17	Bearing end cover (N.D.E.)				
6	O-ring	18	Bearing (N.D.E.)				
7	Spacer Sleeve	19	Lock washer				
8	Sleeve nut	20	Lock nut				
9	Stuffing box bush	21	Bearing housing (N.D.E.)				
10	Mechanical seal	22	Coupling key				
11	Grab screw	23	Water thrower				
12	Gland plate	24	Neck ring pin				

The rotating element consist of a shaft on to which an impeller is placed and arrested at its position with a key to avoid free rotation with respective of rotation of the shaft. Renewable shaft sleeves are provided on both side to protect the shaft from corrosion and erosion. The impeller is locked at its position by sleeve and sleeve nuts, which have threads left/right handed as per the direction of rotation of shaft.

The pump rotor is supported on-deep groove ball bearings on either side of the shaft. Bearings are located in the bearing housing, which are attached to the end of the pump casing. Stuffing box bushes are provided on either side of the shaft on the sleeve and is located in the bottom half of the casing in half-spigot. The purpose of stuffing box bush is to guide the liquid toward the impeller eye. Whereas the back face of the stuffing box provides support to gland packing. Water thrower is placed after gland plate on both side of shaft.

7 Installation and electrical connection (Motor / pump coupling system)

DANGER! Risk of getting crushed!

The installation or removal of the product must not be performed by one person alone.

Measures should be taken to bar persons from standing beneath a suspended load. Furthermore, it is also prohibited to move suspended loads over exposed workplaces where people are present. The fastening devices should be adapted to the conditions at hand (weather, hooking system, load, etc.) Use suitable fastening devices to handle the weight of the product.

WARNING! Danger of personal injury!
The installation and electrical connection should be performed only by qualified personnel in compliance with local regulations. This section provides instructions on the recommended methods of installing pumping sets on to concrete foundations. Careful attention must be paid to the customer and contractor's installation drawings during the installation procedures to ensure that the pumping set is accurately positioned on the correct datum levels.

The existing accident prevention regulations must be observed.

WARNING! Danger of electric shock!

Any hazards from electrical current should be ruled out.

Any instructions from local or general directives [e.g. IEC, VDE etc.] or directives of the local electricity supply companies must be observed.

7.1 Installation of bare shaft pump

It is strongly recommended to use component such as coupling, guards, motors, base plates supplied by Wilo Mather and Platt to install a bare shaft pump on a base plate.

It is mandatory that those components should be CE certified and the coupling guard must comply with the regulation EN 953.

7.1.1 Electrical motor selection

Select an electrical motor with sufficient power margin regarding the motor rating. The table bellow will guide you in this selection.

Shaft power	$P_2 \le 4 \text{ KW}$	4 kW < P ₂ ≤ 10 kW	10 kW < P ₂ ≤ 40 kW	40 kW ≤ P ₂
Recommended power margin	25 %	20 %	15 %	10 %

Example:

- Duty point: 100 m3/h 35 m pump efficiency 78 %
- Pump shaft power: 12.5 kW
- Electrical motor rating (including margin): 12.5 * 1.15 = 14.3 kW
- IEC motor power rating available: 15 kW

Use a foot mounted motor B3 (IM 1001) which comply with the IEC34-1 standard.

7.1.2 Coupling selection

Use a semi–flexible coupling to link the pump to the driver.

Select the size of the coupling in accordance with the recommendation of the coupling manufacture. Strictly follow the coupling manufacturer's instructions for the fitting of the coupling between the pump and the motor. (The coupling must comply with the standard EN349). The alignment of the pumps and the motor must be checked after the installation of the pump set on its foundation and when the piping is connected. In addition an alignment control must take place when the system works at its nominal temperature. The coupling guard must comply with the EN 953 standards in order to avoid any contact with rotating parts during operations.

7.1.3 Selection of a base plate

Select a base plate in accordance with the local regulations, sufficiently large and strong to sup-port the pump and motor.

7.1.4 Pumpset assembling

Fix the pump and motor equipped with their half coupling on the base plate and make the alignment of those elements. It is recommended to fit the coupling guard supplied as accessories by Wilo Mather and Platt.

Note:

If coupling guard (not of polypropylene, but of Mild Steel) is supplied loose, then kindly drill and fit it on the base plate at proper location.

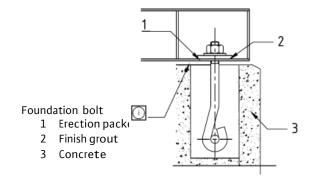
And if pump is supplied with coupling and motor mounted on the base-plate, please ensure proper alignment of pump motor and coupling.

7.2 Installation of the complete pump set

- Before any installation work is carried out, the machine should be inspected for damage that may have occurred during handling, transport & storage.
- Installation within a building: install the pump in a dry, well ventilated and frost-resistant room.
- Pumping machinery should have adequate access and working room for maintenance operations. Adequate overhead space for lifting devices and working clearance must be provided.
- Installation outside a building (outdoor installation):
- Install the pump with a suitable protection to avoid rainfalls strong wind and particles which can damage the pump or motor.
- Avoid exposure of the pump to direct sunlight.
- An appropriate solution to avoid frost must be implemented.

CAUTION! Risk of material damage! Ensure sufficient ventilation/heating if the ambient temperature exceeds/falls below the permitted limit values.

• Carry out all welding and soldering work prior to the installation of the pump.

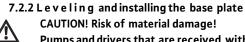


CAUTION! Risk of material damage! Dirt from the pipe system can destroy the pump during operation. Flush the pipe system prior to the installation of the pump.

• Provide shut-off valves in front of and behind the pump.

7.2.1 Foundations (figures 2, 3)

The foundation should be sufficiently substantial to absorb any vibration and to form a permanent, rigid support for the base plate. The foundation must get large dimensions. Generally, the weight of the foundation is around 2 to 3 time the pump set weight. This is important in maintaining the alignment of a direct connected unit. In building the foundation, the top of the foundation should be left approximately one inch low to allow for grouting. Foundation bolts of the proper size should be embedded in the concrete, located by template (refer figure 3).



A pipe sleeve about 2 ½ diameters large than the bolt should be used to allow movement for the final positioning of the bolts. For installations where a low level of noise is expected, built the foundation in a pit lined with appropriate insulation material in order to avoid vibration transmission to the ground.

CAUTION! Risk of material damage! Do not hold the pump by the motor/module when tightening the screwed connections. Apply the wrench surfaces to the suction/pressure port inserted.

It is insufficient to check level on the machined pads of base plate with a spirit level because it is possible that some types of errors will not be revealed or will be accepted as being within acceptable limits. These distortions as showed in figure 4. Therefore it is necessary to use I-beam straight edge along with engineer's master level.

disturbed.

CAUTION! Risk of material damage! Pumps and drivers that are received with both machines mounted on a common base plate are checked for alignment before shipment. However, during shipment, storage it may get

- Use I-beam straight edge and an engineer's master level (with accuracy of 0.02 mm/meter) for leveling the base plate. I-beam should rest on the machined surfaces of the base plate, or on the leveling pads if provided. These machined surfaces where level is being checked must be clean and free from paint, burrs etc.
- Check datum position of base frame as given in G.A. Adjust the level of the base plate by inserting shims between the bed plate and the packer plate until the bed plate is leveled and supported on all the packing plates at the height required for the connection of suction and discharge branches. For checking the levels across two pads, I-beam type straight edge should be used extensively in con-junctions with engineer's master level. Level should be achieved within 0.05 mm per 250 mm.
- When the base plate is leveled, grout the foundation bolts only. Care should be taken so as not to disturb the verticality of foundation bolts. For grouting use rich mix of 1:1:2 of cement, sand and gravel below 12 mm. Alternatively quick setting grout mix can be used.
- When the grout has set, gently but firmly tighten the foundation bolts. Care must be taken not to distort the base plate or loosen the foundation bolts in the grout by excessive tightening.

NOTE:

Leave top of foundation rough! Do not finish with trowel.

7.2.3 A lignment of the pumps and its driving units

- When the base plate is leveled and the satisfactory alignment is completed, proceed with connection of suction & delivery piping.
 Recheck the alignment after piping and run the final grout beneath the base plate. Allow minimum seven days time for curing. Grout mix in the proportion specified earlier for foundation bolt grouting should be used. It is further recommend that all hollow pockets in the base plate shall be filled after curing of earlier grout.
- The following procedures outline recommended practice given in BS-3170 in 1972 for checking shaft alignment. This method is inde

pendent of the trueness of the coupling or shaft and is, therefore, not affected by canted coupling faces or eccentricity of the outside diameter of

the coupling. Before commencing the alignment,

rotate each shaft independently to check that the bearings run freely and that the shaft is true to 0.1mm or better. Check that no damage can be caused when the shaft of the driven unit is turned. Coupling should be loosely coupled and the halves must be free to move relative to each other.

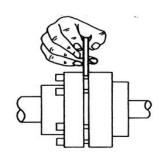
otherwise gauge Indicators can be incorrect. Where, tightly fitting pins or spring prevent loose coupling, the springs or pins should be removed and a line scribed across both half couplings and readings taken only when the two marks are aligned.

CAUTION! Risk of material damage! All the alignments (angular as well as radial) have to be carried out by using 3 dial indicators, simultaneously.

Angular alignment

· After isolating the driven unit from its power supply, clamp two dial indicators at diametrically opposite points on one half coupling or to the shaft behind it with the plunger resting on the back of the other half coupling (See figure 5). Rotate the coupling unit. The gauges are to be in line vertically and set the dial to read zero. Rotate the coupling by 180 and record the readings on each gauge. The readings should be identical, though not necessarily zero. Either positive or negative readings are acceptable provided they are equally positive or negative. Adjust the position of one of the units if necessary. Rotate the coupling unit. The gauges are to be in the line horizontally and adjust the dial to zero. Repeat the operation outlined above by rotating the coupling by 180°.

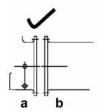
Radial alignment

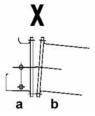

• Clamp a dial gauge on one of the couplings or to the shaft as shown in figure 5 with the plunger resting on the rim of the other half coupling. Set the dial zero. Rotate the coupling and note the reading at each quarter revolution. Any variation in the readings indicates the deviation from alignment and the position of one of the units must be adjusted until the readings at each quarter revolution are identical or within the tolerances given below. Refer figure 5b

Alignment Tolerances

	Pump speed	Angular alignment	Radial
Α	< 1000 rpm	0.15 mm TIR	0.15 mm TIR
В	> 1000 rpm to 1800 rpm	0.1 mm TIR	0.15 mm TIR
С	1800 rpm to 3000 rpm	0.05 mm TIR	0.1 mm TIR

TIR= Total Indicated Reading


Distance between coupling halves for SCP pumps



Rotational s	Gap [mm]		
990 rpm	1450 rpm	2900 rpm	
_	3-55 kW	3-55 kW	2-4
90-120 kW	75-250 kW	75-560 kW	2-6
> 120 kW	> 250 kW	> 560 kW	3-8

7.2.4 Pipe work

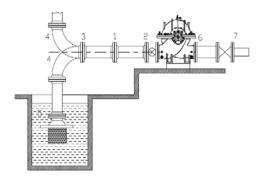
No stress must be imposed on the pump casing by the pipe work; neither by the weight of the pipes nor by the tightening of badly fitting pipes (Figure 6). All pipe worked attached to the pump must be fully supported and the mating faces of the pipe flanges must be parallel and all bolt holes coinciding with each other. (See table of maximum forces on flanges) It is important, therefore, that alignment of the pump and motor should be re- checked after the pipes are finally fitted. Resetting or supporting the pipes must correct any deviation in the alignment.

Avoid stress on the pump casing a: pump flange; b: pipe work

For difficult pumping on the suction side, to stabilize the flow, a pipe length 15 times the diameter of the suction branch should be installed before the suction branch.

- The flow rate in the suction line or inflow line must not exceed 2-3 m/s.
- Pipe velocity may need to be reduced further to satisfy pump NPSH requirements and to control suction pipe losses (refer figure 6).

MAXIMUM ALLOWABLE FORCES & MOMENTS ON SCP PUMPS, FLANGES IN CAST IRON


Nominal Sizes of Flanges Forces (N) and Moments (Nm)

Flange size [mm]		50	65	80	100	150	200	250	300	350	400	450	500
	Fx	710	890	1070	1420	2490	3780	5340	6670	7120	8450	9335	10000
Each side Forces (N)	Fy	890	1130	1330	1780	3110	4890	6670	8000	8900	10230	1115	7780
	Fz	580	710	890	1160	2050	3110	4450	5340	5780	6670	7335	7890
	Fr	1280	1640	1920	2560	4480	9620	9630	11700	12780	14850	16230	17650
Each nozzle	Mx	460	690	950	1330	2300	3530	5020	6100	6370	7320	7675	7945
Moments (Nm)	Му	230	435	470	680	1180	1760	2440	2980	3120	3660	3905	4175
	Mz	350	530	720	1000	1760	2580	3800	4610	4750	5420	5725	6060
	Mr	620	970	1280	1800	3130	4710	6750	8210	8540	9820	10235	10775

7.2.5 Suction line

See the sketches figure 7 for the optimum layout of pump installation for flow and suction lift operation. Ensure that air pockets cannot be created. Unequal nominal widths of the suction branch and suction line must be compensated by eccentric transition pieces (refer figure 8).

- It is recommended that a strainer is installed in front of the suction pipe with a filter surface of at least 3 times the pipe cross section (approx.100 meshes/cm²).
- The suction opening of the suction line should be well below the liquid level, and a strainer should be
- The strainer must be far enough from the bottom to avoid excessive inlet losses, which could impair pumping performance. It is advisable to check that there is no leakage.
- A shut-off valve should be installed in the feed line. It must be closed for maintenance work. It should be installed in order to avoid air pockets forming in the spindle cap, i.e. with the spindle in a horizontal position or pointing vertically downward.

Layout of pump installation

- 1) Eccentric reducer (suction) or concentric reducer (discharge)
- 2) Isolating valve
- 3) Suction line
- 4) Rend
- 5) Foot valve with strainer
- 6) Isolating valve
- 7) Regulating valve

7.2.6 Discharge line

CAUTION! Damage to the pump

Pump casings have sometimes been cracked by pressure surges imposed on them through the absence of a non-return valve. A back flow can seriously damage the bearings and the mechanical seal.

For flow regulation, a valve must be installed behind the pump. If non-return valves are used, they should close smoothly. Pressure shocks must be avoided.

7.2.7 Stuffing box packing (fig. 9)

CAUTION! Risk of quick wear or leakages packing should be handled with care and it should not be allowed to pick up the dust or abrasive matter by coming into contact with floors or dirty benches. It is bad practice to hammer packing to facilitate the insertion.

Pumps are dispatched from our works with the stuffing boxes unpacked; otherwise packing will be aged. The packing is packed with greaseproof paper and dispatched with the pump. The softest possible packing i.e. plaited cotton impregnated with oil and colloidal graphite is recommended for most duties. Required number of and lengths of packing should be cut off so that each length will pass once round the shaft sleeve line and meet to end. The ends of packing must be cut at 45°. After cleaning the stuffing box and shaft sleeves the packing should be inserted into the stuffing box. Each ring should be pushed into position individually using the glands joint of each ring must be positioned 180° from joints of its neighbor. A logging ring included in the arrangement; should be inserted into the stuffing box at the appropriate time during the packing sequence so that it is aligned with the cooling water connection. The gland should now be fitted square with the pump casing and the nut should be screwed up to little more than finger tightness.

7.2.8 Mechanical seal

CAUTION! Damage to the pump Never start the pump without liquid inside otherwise the mechanical seal will be damaged

instantaneously. No real operation is required during the setup of

the pump. Only filling and venting the pump are mandatory before switching on the main.

7.2.9 Pressure gauge connections

CAUTION! Risk of leakage of the fluid! Never connect a pressure gauge onto the pump when the system is under pressure.

Pressure gauge connections are available on the pump casing close to the flanges. Then pressure gauge can be connected on suction and discharge side.

7.2.10 Electrical connection

WARNING! Danger of electric shock
The electrical connection should be established
by an electrician approved by the local electri—
city supply company in compliance with the
applicable local regulations [e.g. VDE regulations].

- The current type and voltage of the mains connection must correspond to the specifications on the name plate.
- Refer to the motor and panels instruction manual at the time of installation and connection. Motors or electrical control panels are operated with alternating or industrial high-voltage current.
- The electrical connection is established via a fixed mains connection line.
- The local regulations must be adhered to.
- Ensure that there is a provision for isolation of all energy sources and locking. If the machine has been switched off by, a protective device, it must not be switched on again until the error has been corrected.
- The electrical system (machine including protective devices and operating position) must always be grounded. Referpump GA drawing & respective manuals of motor/electrical control panel for connecting earthing suitable as per motor rating and relevant regulations and standards including proper earthing lug size and fasteners.
- Under no circumstances may any connecting cables touch the pipeline or the pump or motor housing.
- If there is a possibility that people can come into contact with the machine and the pumped liquid (e.g. at construction sites), the grounded connection must be additionally equipped with a fault current protection device.
- To ensure drip water protection and strain relief of the cable connections, use cables with an appropriate outer diameter and screw the cable glands tight. Furthermore any cables nearby screwed connections for outlet loops should be bent in order to divert any accumulating drip water. Close any unassigned cable glands with the existing sealing discs and screw them tight.

7.2.11 Operation with frequency converter

The rotation speed can be adjusted in the opera ting limits of the pump given in the technical data. The electrical motors can be driven by a frequency converter in order to adapt the pump performances the duty point required. Please contact Wilo Mather and Platt before connecting the frequency converter to the motor to make sure that the electrical motor is compatible with this driver. In any case, please inform Wilo Mather and Platt at the quotation stage if the pump set will by driven by a frequency converter this might influence the motor selection.

- The converter should never generate voltages peaks to the motor connection higher than 850V and deliver voltages variations $\Delta U/\Delta t$ greater than 2500 V/ μ s.
- If the above conditions cannot be fulfilled, an appropriate filter should be place between the frequency converter and the motor. Please contact the frequency converter manufacturer for guidance in the selection of this filter.
- Strictly follow the Frequency converter manufacturer instructions.
- The minimum rotation speed of the pump should never go below 40% of the nominal speed.

8 Commissioning

WARNING! Danger of injury

The devices whether on pump/motor/electrical panels must never be dismantled or disabled. They must be checked by an authorized technician for proper functioning before, start-up. Refer to motor & electrical panel instruction manuals for electrical safety & control devices information.

WARNING! Danger of pump damage!
Do not operate the pump away from specified operating range. Operating beyond duty point may not pose a risk to the operator but will reduce the efficiency of the pump or damage the pump itself. Operation more than 5 minutes, at close valve condition is not recommended. For hot liquids this is not recommended at all. Ensure that always site NPSH-A is more than NPSH-R.

8.1 Cleaning prior to start

8.1.1 Pipe work flushing

Before the pumps are brought into service, either on initial commissioning or on re—commissioning after overhaul, the pipe work associated with the pumps must be flushed through. This will clear deposits or scales which may have accumulated in the pipes, and which could damage the internal components of the pumps.

8.1.2 Cleaning of bearings

SCP pumps are fitted with pre-lubricated, sealed bearings which do not require external lubrication for life. For Ball bearings which require external greasing and if the unit has been in store for a long period before commissioning, the bearings should be cleaned and flushed out with clean white spirit or good quality paraffin. Waste oil/paraffin & used cotton cloth should not be used for this purpose, as particles of foreign matter may be left behind which would cause damage when the bearing is in service. Bearings should be then filled with recommended grade and quality of fresh lubricant to the level. Refer list of lubricants at the end of this manual.

8.2 Filling and venting

Fill and vent the system correctly, through air cock. Brief dry running will damage the pump. Please also note that these pumps are not self priming, which means that the impeller & casing must always be fully filled with fluid to be handled before putting in operation

WARNING! Danger of injury!

There is a risk of burns if the pump is touched!
The entire pump may become very hot; depending on the operating state of the pump or system (fluid temperature).

CAUTION! Danger sealing system damage! Any attempt to run the pump dry or partially full may result in seizure of the rotating internal components.

8.2.1 Pumps operating on flooded suction head

When these pumps operate on a flooded open the air release valve situated on top of the pump casing, open the pump inlet isolating valve and vent the air out of the casing. When the liquid issues from the air vent, free of air, the pump is properly primed. The airvent must be closed after priming and before the pumping set is started...

8.2.2 Pumps operating on negative suction head

There are two methods of priming pumps that draw their liquid from an elevation lower than the pump inlet branch:

- If the inlet pipe work is fitted with a non-return foot valve, the pump casing and inlet pipe work can be filled with liquid from an external source under pressure. The pressure imposed on the pump by this method must not exceed that for which the pump is designed. In certain cases priming can be achieved by flooding back from the delivery side of the pump.
- By extracting air or gas from the pump casing. To enable this method to be used, the gland arrangement must be sufficiently air—tight or it should be liquid sealed from an external supply.
 For operation details of gas exhausts reference should be made to the manufacturer's instructions. Some form of priming indicator is usually fitted to indicate when the priming operation is complete.

8.2.3 Pumps operating on hot liquids

Pumps operating on hot liquids are usually so arranged that the liquid flow into the pump is under pressure. If the saturation pressure of such liquids is above atmospheric pressure, any attempt to prime the pump will result in the liquid "flashing" from the air cocks. Forthese reasons, the air cocks at the top of the pump casing should be left slightly open when priming boiler circulating pumps until air has been driven out of the casing completely.

The cooling water services of a pump handling hot liquids should be turned on before the pump is primed. These services may supply cooling water to the bearings and / or stuffing boxes. Where the services are functioning, open the inlet valves and start warming the pump throughout. Never cut off the water services while the pump is "on temperature". Where bearings are water—cooled, adjust the cooling water supply until the bearings have a running heat. Over—cooling may lead to condensation of moisture from the atmosphere inside the bearing with consequent contamination of the

bearing with consequent contamination of the oil. The suction valve, if provided, must be fully open and the delivery valve must be closed.

8.3 Starting the pump

8.3.1 Direction of rotation

Disconnect the drive coupling and run the motor to check its direction of rotation. A directional arrow is provided on the pump unit.

8.3.2 Pre-starting checks

- Check that the inlet isolating valve is open and that the delivery valve is closed.
- Check that there is no blockage in the strainer at the end of the suction line.
- Check for free rotation of the unit when coupled.
- Check that suction and delivery pressure gauges are connected. Test and make available any alarm, signals, interlock systems and any of the protec

- tive devices incorporated in the auxiliary and main pumping control system.
- Ensure that all electrical checks on motor, relay setting in panel etc have been carried out in accordance with the instructions of motor manufacturer.
- Ensure that stuffing box sealing water seal connection is provided as shown in GA Drawing.

Pre	Pre-start Check up							
	Activities	Checked on	Remarks					
1	Alignment with and without piping							
2	Flushing of pipe lines and ensures no leakages							
3	Availability of sufficient liquid in sump/suction as per specifica-							
	tions							
4	Installation of all instruments							
	Suction and delivery pressure gauges							
	Pressure switches							
	Temperature gauges Amorthur assumption for a siftend							
	Any other as supplied/specified							
5	Operation of suction, delivery and inline valves							
6	Proper supports for piping and other allied equipments							
7	Availability of flushing/sealing liquid for stuffing box							
8	Availability of sufficient cooling liquid for bearings as specified							
9	Free rotation of pump and drive shafts							
10	Lubrication of bearings							
11	Checking of insulation resistance of motor							
12	Proper cable termination							
13	Motor protection relay settings							
14	Check all interlocks as specified/provided							
15	No load trial operation of drive							
	Direction of rotation is ok							
	Noise and vibration within limits							
	Bearing temperatures and winding temperatures are within limits.							
	within limits • Overall operation is satisfactory							
1.0	•							
16	Coupling of pump and drive and free rotation of shafts in coupled condition							
17	·							
	Suction valve is fully opened							
18	Pump is fully primed and all air is vented							
19	Delivery valve is closed (if required)							
20	Emergency shutdown is possible							

8.3.3 Normal starting and running checks

- When all the foregoing pre-start checks are satisfactory, start the pump and check the direction of rotation (indicated by a direction arrow on the pump casing) otherwise stop the pump immediately for correction of direction of rotation. Then run the pump at its rated speed.
- Check the ammeter reading to ensure that the motor is not being overloaded.

• If applicable, ensure that the stuffing box is not overheating and that there is slight leakage from the gland (about 1 drop per second). There may be at first a tendency for the stuffing boxes to run warm because of the high viscosity lubricant in the packing. During the first few minutes of running with new packing, a small quantity of very viscous fluid will be extruded, but the flow should reduce when the packing has settled down.

- Check the mechanical seal for leak. In the start phase (and also after downtimes) slight leakage can be expected. Visual leakage checks are however required from time to time. Distinctly visible leakage will require an exchange of the seal. Wilo Mather and Platt offers a repair set containing all parts required for an exchange.
- Check that the bearing is not overheating. Bea rings will normally run at a temperature of 30 °C-
- 35 °C above ambient temperature. The ideal running temperature of bearings is 40 °C to 60 °C for ball bearings and 40 °C to 55 °C for bush bearings. The temperature should never exceed 82 °C for ball bearings and 75 °C for bush bearings. If the bearings are overheating its cause should be investigated immediately.
- If the foregoing checks are satisfactory, open the delivery valve slowly and bring the pump gradually up—to its rated parameters indicated in the data sheet/name plate and based on pressure gauge and ammeter readings. Unless the pump is fitted with a special leak—off device, it should not be run for a long period against a closed delivery valve. Check that the driving unit is not being overloaded during valve opening. Overloading may occur if the pump is discharging into an empty system. If the pumping unit fails to generate at least its rated delivery pressure it must be stopped immediately, the cause ascertained,
- Check vibration of pump set and ensure that vibration level is within limits specified. Check that noise level is within stipulated limits.
- The pumps may be run for 8 hours trial operation and all the parameters like delivery pressure, current, bearing temperature, etc. Be recorded periodically.
- Make the following checks at regular intervals. It is recommended that they be made at every change of shift
- Check the suction and discharge pressure gauge for normal operating pressure, if there is significant drop in the suction or discharge pressure the pump may have lost its supply. In the event of this fault occurring, the pump must be stopped immediately and the cause of liquid loss eliminated.
- Check the mechanical seal or stuffing box assembly for overheating.

8.3.4 Sealing system

Gland packing

CAUTION! Risk of damaging the pump! If the gland plate is too tight, the packing stuff will be immediately damage.

At the beginning of the operation, the leak at the gland packing should be important. It should reduce progressively after several hours by a balanced and reasonable tightening the gland plate. The gland packing must operate without excessive temperature. The correct setting of the gland packing let a permanent leak around 1 or 2 drops per seconds.

If this leak is too much and cannot be adjusted with the gland plate, the packing stuff is worn and must be replaced.

Mechanical seal

CAUTION! Risk of damaging the pump! A mechanical seal must never operate without fluid and lubrication even for a short period of

Insure that the pump is completely full of water and vented before starting the pump. Small leakages can occur during the period of runningin, they should disappear after several hours of operation. If the leakages don't stop, shut down the pump disassemble the mechanical seal and control their condition.

8.3.5 Normal shutdown

WARNING! Risk of Burns!

If the fluid temperature and system pressure is high, close the isolation valves upstream and downstream of the pump. Initially let the pump cool

- Close the delivery valve to reduce the load on the driving unit.
- Stop the driver of the pump.
- When the pump has come to rest, close the suction-isolating valve.
- Isolate any ancillary supplies.

8.3.6 Emergency Shutdown

In the event of any malfunction of the equipment, switch off the pump set. When the pump has come to rest, close the suction & discharge valves, isolate the driving unit power supply & rectify the fault.

9 Maintenance

Maintenance and repair work should be carried out by qualified personnel only.

WARNING! Danger of electric shock!

Any danger from electrical current should be ruled out.

- The pump should be electrically isolated and secured against unauthorized switch—on prior to any maintenance or repair work.
- Any damage to the connection cable should always be rectified by a qualified electrician only.

WARNING! Risk of scalding! At high fluid temperatures and system pressures, allow the pump to cool down first and then depressurize the system.

9.1 Routine maintenance and frequency of inspection

Centrifugal pump requires very little routine maintenance; however, serious troubles can be often avoided by regular observation and analysis of various working parameters. Some of the routine maintenance checks for this

purpose are as under:

- To keep daily logbook records of working parameters like suction and discharge pressure, flow rate, current drawn, bearing temperature, etc. These parameters should be recorded twice a shift. Any sudden change should be a signal for investigation. Refer Section Maintenance & Inspection log.
- Check bearings for normal temperature. See 8.3.3
- Vibration & sound level readings should be taken once in a fortnight and values compared with that of previous records.
- Check that there is sufficient leakage from the gland packing to ensure proper cooling and lubrication. (If applicable) For mechanical seal, check that there is no visible leakage.
- For any abnormality observed from the visual/manual inspection and through maintenance & inspection logs, stop the pump and investigate.
- Fault finding Many of the common faults which occur on centrifugal pumps and which can be diagnosed by observations are given in the chart under section 10 Faults, causes and remedies.

Routine maintenance	Routine maintenance							
Parts	Action	Period	Remarks					
Mechanical Seal	Check for Leakage	Daily	5.6 gm/hr per pair of seal face					
Gland Packing	Check for Leakage	Daily	10 to 120 drops/min					
	Check for Leakage	Half yearly	If required replace with new pickings					
Bearings	Check temperature	Weekly	Bearings are greased for life and are maintenance free					
Suction Pressure	Check Pressure	Daily						
Discharge Pressure	Check Pressure	Daily						
Flushing	Check Flow	Weekly	Flow through the Flushing pipes must be clear and continuous					
Vibration	Vibration	Weekly						
Voltage and Current	Check for the rated values	Weekly						
Rotating element	Check the rotating for wear	Yearly						
Clearances	Check the clearances between neck ring and	Yearly	If value of clearance is more, neck ring should be replaced					
Total Dynamic Head	Check Suction and Discharge TDH	Yearly						
Alignment	Check the alignment of pump with motor	Half yearly	For reference use pump motor GA Drawing					

9.2 Overhaul maintenance

9.2.1 General information

After a long period of service, wear will occur in parts of the pump, necessitating the renewal of a few components. Logbook records will indicate wear as gradual deterioration of performance is noticed. Once this is known, pumps should be taken for overhaul. It is recommended that yearly stripping & checking of wear & tear and clearances should be done and overhauling where required.

If related pair of components show a marked degree of wear in relation to the rest of the unit, then it may be sufficient to renew only the heavily worn components. If the wear is uniform throughout the pump, then all wearable components may require renewal.

Measurements should be taken and recorded of all wearable components at the first, and every sub sequent overhaul period. Reference to these records will enable an accurate assessment of the rate of wear to be made, and a reasonably accurate forecast regarding when a particular component may require renewal can be made.

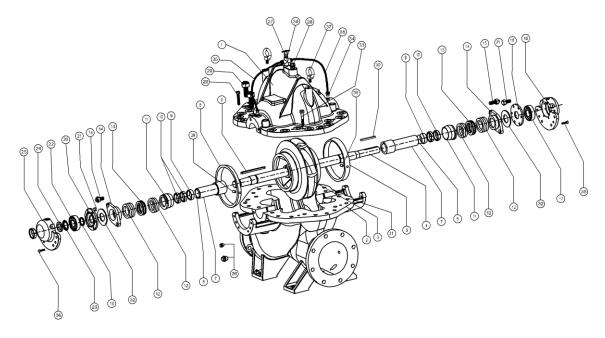
Internal nominal diameter of the wear ring in (mm)	Nominal gap at the diameter in (mm)
65	0.38
100	0.46
150	0.58 - 0.55
200	0.62
250	0.68
300	0.74
350	0.84 - 0.80

NOTE:

The figures given in the table above are only valid if the wear rings and the impeller are made with in the same materials of low galling tendencies. For materials with higher galling tendencies (AISI 304/316 etc...), higher clearance is provided (0.125 mm to be added to given values).

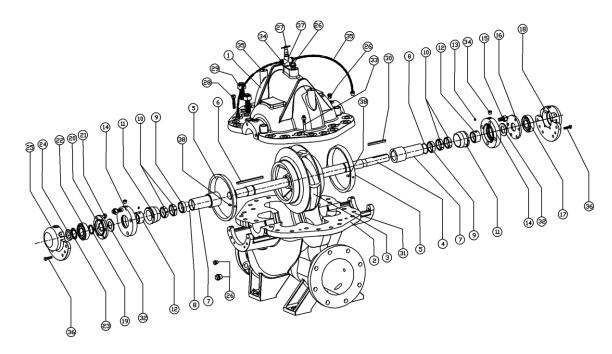
Information regarding original design dimensions and clearances is furnished in data sheet. Any other information, if needed, can be requested from Service Department, WILO Mather and Platt. Such request must quote name plate number and type of the pump in question.

The parts most likely to be affected are:


- Impeller
- Mechanical seal
- Neck Rings
- Sleeves
- Stuffing Box Bush
- Bearings
- Coupling Bushes/membrane set

Before commencing dismantling operations, ensure that the following tools and tackles are available:

- A crane / chain pulley block suitable for handling the weight of pumping unit.
- A selection of ring and open-ended spanners in British and Metric sizes.
- Eyebolts in British and Metric sizes.
- Cotton rope, wire rope and slings.
- Hardwood and metal packing blocks.
- Miscellaneous tools including a set of Allen keys, drills, pin drivers, files etc.
- Extractor / puller for bearing and coupling. The torque value to be set for a particular size of screw is dependent upon:
- Material of screw
- Parent metal
- Whether the screw is untreated or plated
- Whether the screw is dry or lubricated
- The depth of the thread


Tightening torques — Untreated Screw (black finish); Coefficient of Friction 0.14														
Property class	Torque	Nominal diameter — Coarse thread												
		M6	M8	M10	M12	M14	M16	M20	M22	M24	M27	M30	M33	M36
8.8	Nm	9.2	22	44	76	122	190	300	350	500	600	1450	1970	2530
	Ft. lb	6.8	16.2	32.5	56	90	140	221	258	369	443	1069	1452	1865

9.3 Disassembling the pump

Exploded view of SCP pump (Gland pack version)

Gland pack version					
No.	Description	No.	Description		
1	Casing top half	20	Bearing end cover (Non Drive End)		
2	Casing bottom half	21	Stud for bearing end cover		
3	Impeller	22	Bearing (Non Drive End)		
4	Shaft	23	Lock washer		
5	Neck ring (Wear ring)	24			
6	Impeller key	25	Bearing housing (Non Drive End)		
7	Shaft sleeve	26	Hex plug		
8	O-ring	27 Air cock			
9	Spacer Sleeve	28 Hex screw for jacking			
10	Sleeve nut	29	Studs for split flange		
11	Stuffing box bush	30	Coupling key		
12	Gland packing	31	Gasket		
13	Logging ring	32	Water thrower		
14	Gland	33	Steady pin		
15	Stud for gland	34	Stud coupling		
16	Bearing end cover (Drive End)	35	35 Sealing connection (Flushing Pipe)		
17	Bearing (Drive End)	36	Hex screw for bearing housing		
18	Bearing housing (Drive End)	37	4 way valve		
19	Thrust collar	38	Neck ring pin		

Exploded view of SCP (Mechanical seal version)

Mech	Mechanical seal version					
No.	Description	No.	Description			
1	Casing top half	20	Bearing end cover (Non Drive End)			
2	Casing bottom half	21	Stud for bearing end cover			
3	Impeller	22	Bearing (Non Drive End)			
4	Shaft	23	Lock washer			
5	Neck ring (Wear ring)	24	Lock nut			
6	Impeller key	25	Bearing housing (Non Drive End)			
7	Shaft sleeve	26	Hex plug			
8	O-ring	27 Air cock				
9	Spacer Sleeve	28 Hex screw for jacking				
10	Sleeve nut	29 Studs for split flange				
11	Stuffing box bush	30	Coupling key			
12	Mechanical seal	31	Gasket			
13	Grab screw	32	Water thrower			
14	Gland plate	33	Steady pin			
15	Stud for gland	34	Stud coupling			
16	, , ,	35	Sealing connection (Flushing Pipe)			
17	Bearing (Drive End)	36	Hex screw for bearing housing			
18	Bearing housing (Drive End)	37	4 way valve			
19	Thrust collar	38	Neck ring pin			

9.3.1 Disassembling the top casing

- Isolate the pump system by closing suction and delivery valve.
- Drain the pump and open the upper air vent (27).
- Remove two steady pins (33) and the split flange nuts.
- For gland packing:
- Remove nuts of split gland (15) from both ends and slide away the gland (14). Remove gland packing (12) as well as logging ring (13)
- For mechanical seal:
- Disconnect the flushing tubes (35), loosen the nuts of the gland plate (14) and slide them away on the shaft (4).
- Remove all studs (29) joining top & bottom casing (1&2). Connect suitable lifting tackles to the eye bolts (37) provided on top half casing (1). Remove the casing gasket (31)
- Remove the paper gasket (31) placed in between the two casing halves

9.3.2 Dismantling the rotating element (Gland pack version pump)

- Remove the coupling screw/nut of the coupling
- Remove the screw of the bearing end cover (16&20)
- Remove the steady pin (33) and hex screw (36) of bearing housing (18 & 25)
- Lift the rotor element
- Remove the coupling and coupling key (30)
- Remove bearing housings of both driving and non driving ends (18 & 25)
- Now remove the lock nut (24) and lock washer (23) From the shaft free end
- Remove the both driving and non driving bearings (17 & 22) using puller (Never try to extract the bearing by applying force to the outer race)
- Now remove the thrust collar (19) from the non driving end of the shaft
- Remove the water thrower (32) from both sides of the shaft (4)
- Remove the gland (14) and gland packing (12) from the shaft along with logging ring (13)
- Remove the stuffing box bush (11) from both sides
- Now unscrew and remove the sleeve nuts (10) and spacer sleeves (9) on both sides
- Carefully extract the o-ring (8) from the sleeve
 (7) With suitable tool without damaging it
- Now remove the neck rings (5) from the impelleer (3)
- In order to remove the sleeves effortlessly, apply some molly cream or grease on the shaft and slide the sleeves over it(Also first clean the shaft prior to the removal of the sleeves). Mark the position of impeller (3) on the shaft (4) to ease the reposition it while reassembling.
- Now remove the impeller (3) carefully avoiding damage to the impeller key (6)
- If difficulty is observed in removal of the impeller, apply heat uniformly over the impeller shrouds inwards towards the hub

9.3.3 Dismantling the rotating element (Mechanical seal version pump)

The only difference between disassembly of gland pack and mechanical seat version pump is the disassembly of the mechanical seal The procedure up to water thrower removal is same as per gland pack version.

Disassembly of mechanical seal is as follows:

- Slide out the gland plate carefully over the shaft.
- Now mark the position of mechanical seal (12) on the shaft (4) to ease the position while reassembling
- Unscrew the grub screw of the seal adjusting ring
- Pull the mechanical seal carefully over the shaft followed by removal of adjusting ring
- Rest procedure is same as explained for gland pack version pump

9.4 Examination of Internal Components

With the disassembled rotating element, the internal components and clearances can be checked

9.4.1 Casing neck ring

Use an internal micrometer to measure the bore of casing ring, taking measurements at intervals around the circumference to check for uneven wear. A comparison between this dimension and that of the impeller neck will indicate the amount of diametrical clearance between the casing neck ring and the impeller neck. If this clearance is 150% or more than the original design clearance, or if the deterioration in hydraulic performances has been such that no further deterioration can be tolerated during the next operation period, the neck ring should be replaced.

The impeller-wearing ring to casing neck ring clearance must be restored to the original design value by fitting small-in-bore neck rings, bored out to suit the diameter of the impeller.

9.4.2 Shaft Sleeves

The shaft sleeve should be examined to see if it is grooved or generally worn. The outside diameter of the sleeve should be measured and a comparison made with the bore of the stuffing box bush through which the sleeve passes. The amount of clearance between the two can thus be checked to determine whether or not it is within acceptable limits.

9.4.3 Impeller

Inspect the impeller as follows:

- Examine the impeller for damage.
- For corrosive /erosion pitting.
- Cavitations pitting.
- Bent or cracked vanes, inlet and outlet vane end wear.
- If damage is extensive, impeller may need replacement.
- Further information should be sought from Wilo Mather and Platt before any decision on repair work is undertaken.
- Around the eye, wearing rings protects the impeller. Examine around the eye at neck portion for grooving in alignment with spindle axis; slight grooving is acceptable but deep or profuse grooving must be remedied by machining the impeller by taking a polish cut on wearing ring.
 Spare wear rings are supplied with excess outside diameter to facilitate machining after fitting. The wear rings are shrink fitted on impeller neck and are screwed. NOTE:

 $\lfloor (i) \rfloor$

Impeller wearing rings are an optional feature to enhance the protection for impeller eye. In standard case pump is supplied with neck ring only.

To check wear around the impeller neck, use precision instruments such as outside micrometer to accurately measure the outside diameter.
 Measurements should be taken at intervals around the

circumference to check the uneven wear. Differences between the neck OD and the neck ring ID measured will give us the clearance between the two. Clearance thus obtained should not be more than 150% of maximum designed clearance.

9.4.4 Shaft & keys

Shaft should be checked for the trueness, or any other mechanical damage and corrosion. If the shaft is not true within 0.1 mm TIR (Total Indicated Reading), it should be replaced/repaired. Examine the shaft keys and keyways. Remove damaged or worn out keys.

9.4.5 Bearings

The ball bearings fitted on the SCP range are greased for life. Then no maintenance is required. Check that bearing rotates freely and smoothly, verify that the outer ring presents no abrasions or discoloration. If there is any doubt regarding the serviceability of the bearing it should be replaced. As exceptions, the (*) marked models of SCP receive bearing which need re-greasing.

The re-filling must take place each 1000 hours of operation and the grease fully replaced every 3000 hours or earlier if the local prescription requires it.

	BALL BEARINGS				
Pumps	DRIVE END	NON-DRIVE END			
Designation	Size	Size			
SCP 50-220 HA	6204 2z	6302 2z			
SCP 50-180 HA	6304 2z	6304 2z			
SCP 50-340 HA	6304 2z	6304 2z			
SCP 50-340 DS	6305 2z	6305 2z			
SCP 65-390 HS	6305 2z	6305 2z			
SCP 80-230 HA	6305 2z	6305 2z			
SCP 80-200 HA	6305 2z	6305 2z			
SCP 80-380 DS*	N206	6305 2z			
SCP 80-340 HA	6305 2z	6305 2z			
SCP 80-360 DS	6306 2z	6306 2z			
SCP 100-270 HA	6305 2z	6305 2z			
SCP 100-280 HA	6305 2z	6305 2z			
SCP 100-360 HA	6305 2z	6305 2z			
SCP 100-400 HA	6305 2z	6305 2z			
SCP 100-410 DS	6307 2z	6307 2z			
SCP 125-290 HA	6306 2z	6306 2z			
SCP 125-330 HA	6306 2z	6306 2z			
SCP 125-440 HA	6306 2z	6306 2z			
SCP 125-470 HA	6308 2Z	6308 2Z			
SCP 125-460 DS	6309 2z	6309 2z			
SCP 150-290 HA	6306 2Z	6306 2Z			
SCP 150-390 HA	6308 2z	6308 2z			
SCP-150-350 HA	6308 2z	6308 2z			

	BALL BEARINGS				
Pumps	DRIVE END	NON-DRIVE END			
SCP 150-440 HA	6308 2z	6308 2z			
SCP 150-580 HA	6311 2z	6311 2z			
SCP 150-530 HA	6311 2z	6311 2z			
SCP 150-460 DS	6309 2z	6309 2z			
SCP 200-310 HA	6308 2z	6308 2z			
SCP 200-320 HA	6308 2z	6308 2z			
SCP 200-370 HA	6308 2Z	6308 2Z			
SCP 200-360 HB	6308 2z	6308 2z			
SCP 200-390 HA	6311 2z	6311 2z			
SCP 200-440 HA	6311 2z	6311 2z			
SCP 200-460 HA	6311 2z	6311 2z			
SCP 200-550 HA	6311 2z	6311 2z			
SCP 200-480 HA	6311 2z	6311 2z			
SCP 200-560 HA	6314 2z	6314 2z			
SCP 200-660 DV	6314 2z	6314 2z			
SCP 250-250 HA	6306 2z	6306 2z			
SCP 250-390 HA	6311 2Z	6311 2Z			
SCP 250-360 HA	6311 2z	6311 2z			
SCP 250-450 HA	6314 2z	6314 2z			
SCP 250-570 HA	6314 2z	6314 2z			
SCP 250-700 DV*	6316 2z	3316			
SCP 250-740 DV*	6316 2z	3316			
SCP 300-330 HB	6311 2z	6311 2z			
SCP 300-380 HA	6311 2Z	6311 2Z			
SCP 300-400 HA	6311 2z	6311 2z			
SCP 300-490 HA	6314 2z	6314 2z			
SCP 300-570 HA	6314 2z	6314 2z			
SCP 300-660 DV	6318 2Z	6318 2Z			
SCP 350-500 HA	6314 2z	6314 2z			
SCP 350-470 HA	6314 2z	6314 2z			
SCP 400-540 HA	6314 2Z	6314 2Z			
SCP 400-480 HA	6314 2z	6314 2z			
SCP 400-550 HA	6316 2z	6316 2z			
SCP 400-710 HA	6316 2z	6316 2z			
SCP 400-660 DV*	6316 2z	3319			

9.4.6 Stuffing box bush

Check bore of stuffing box bush and compare with sleeve diameter. If "clearance" is excessive, the bush should be renewed.

9.4.7 Mechanical seal

Ensure that the sliding face do not present any scratches or abnormal wear. Verify that the driving collar is well screwed on the shaft at the right place. Check that no material block the spring action.

9.5 Reassembling the pump

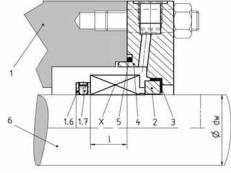
9.5.1 Reassembly of rotating element (Gland pack version pump)

- Place the impellerkey (6) at its seat on the shaft (4)
- Now slide the impeller (3) at its position on the shaft (4), matching the marked position done while disassembly
- Place the neck ring (5) on the impeller eye
- Slide the sleeve (7) on both side of the impeller over the shaft
- Insert the O-ring (8) in between the shaft (4) and sleeve (7)
- Now place the spacer sleeve (9); ensuring proper positioning of the O-ring (8)
- Screw the sleeve nut (10); but don't tight it now, keep it loose
- Now slide in the stuffing box bush (11) over the shaft on both sides
- Place the logging ring (13) next to the stuffing box bush (11)
- Side in the gland (14), followed by water thrower (32) on both side
- Now slide the bearing inner cover (16 & 20) on either side of the shaft(4)
- Now place the thrust collar (19) followed by thrust end bearing (22). To place the bearing at its position using proper mounting aid
- Now place the lock washer (23) and lock nut (24).
- Tight the lock nut completely with proper tightening tool and lock it with the lock washer (23). For tightening sequence refer figure 10
- Now place the bearing (17) at the driving end using proper mounting aid
- Press the bearing housing (18 & 25) over the bearings (17 & 22) using a mallet

9.5.2 Re –assembly of the pump (Gland pack version pump)

- Ensure that casing is clean, dry and free from foreign matter. Clean casing neck ring and stuffing box bush seating thoroughly and ensure they have no burrs.
- Now lift the rotor assembly and place it on the bottom half casing (2)
- Put a gasket (31) from 0.25 mm thick black joint paper or similar gasket material and locate on split flange of bottom half casing.
- Make sure the neck ring pin (38) provided to the neck ring (5) and stuffing box bush (11) sits properly in their respective sit
- Now screw the bearing end cover(16 & 20) to the bearing housing (18 & 25) and bearing housing to the bottom casing(2)
- Pull the water thrower (32), gland (14) and logging ring (13) towards the bearings (17 & 22) on both sides
- Now check the position of impeller; if adjust ment is required, do it by loosing/tightening the sleeve nut (10) on either side of the impeller
- After proper positioning of the impeller, tight the sleeve nut (10)
- Place all the studs for split flange (29) at their respective positions
- Now place the top half casing (1)
- Insert the steady pins (33) of casing (1 & 2) and bearing housing (18 & 25) at respective their position
- Tighten the bolts with a torsion bar with the proper sequence
- Check for the proper position of neck ring (5) and stuffing box bush (11)
- Now stuff in the stuffing box with the number of gland pack rings. For proper cutting procedure of packing rings refer figure 9.
- Press in the logging ring and stuff in remaining gland pack rings
- Now place the gland at its position and hand tight its studs (15)
- Check for free rotation of the shaft

Table for Gland Packing Details For SCP pumps									
Pump	Gland packing size mm²	Packing ring quantity	Pump	Gland packing size mm ²	Packing ring quantity				
SCP 50-220 HA	12	2	SCP 200-390 HA	20	3				
SCP 50-180 HA	14	3	SCP 200-440 HA	20	3				
SCP 50-340 HA	10	5	SCP 200-460 HA	20	3				
SCP 50-340 DS	9	3	SCP 200-550 HA	20	3				
SCP 65-390 HS	14	3	SCP 200-480 HA	20	3				
SCP 80-230 HA	14	3	SCP 200-560 HA	22	3				
SCP 80-200 HA	14	3	SCP 200-660 DV	22	3				
SCP 80-380 DS	10	3	SCP 250-250 HA	16	3				
SCP 80-340 HA	14	3	SCP 250-390 HA	20	3				


Table for Gland Packing Details For SCP pumps							
SCP 80-360 DS	10	4	SCP 250-360 HA	20	3		
SCP 100-270 HA	14	3	SCP 250-450 HA	22	3		
SCP 100-280 HA	14	3	SCP 250-570 HA	22	3		
SCP 100-360 HA	14	3	SCP 250-700 DV	20	4		
SCP 100-400 HA	14	3	SCP 250-740 DV	20	4		
SCP 100-410 DS	10	6	SCP 300-330 HB	20	3		
SCP 125-290 HA	16	3	SCP 300-380 HA	20	3		
SCP 125-330 HA	16	3	SCP 300-400 HA	20	3		
SCP 125-440 HA	16	3	SCP 300-490 HA	22	3		
SCP 125-470 HA	17.5	3	SCP 300-570 HA	22	3		
SCP 125-460 DS	12	5	SCP 300-660 DV	20	4		
SCP 150-290 HA	16	3	SCP 350-500 HA	22	3		
SCP 150-390 HA	17.5	3	SCP 350-470 HA	22	3		
SCP 150-350 HA	17.5	3	SCP 400-540 HA	22	3		
SCP 150-440 HA	17.5	3	SCP 400-480 HA	22	3		
SCP 150-580 HA	20	3	SCP 400-550 HA	20	4		
SCP 150-530 HA	20	3	SCP 400-710 HA	20	4		
SCP 150-460 DS	12	3	SCP 400-660 DV	20	5		
SCP 200-310 HA	17.5	3					
SCP 200-320 HA	17.5	3					
SCP 200-370 HA	17.5	3					
SCP 200-360 HB	17.5	3					

9.5.3 Reassembly of rotating element (Mechanical seal version pump)

Procedure for rotor assembly for mechanical seal pump is similar up to assembly of stuffing box bush (11)

Reassembly of mechanical seal is as follows:

- Extreme cleanliness must be observed during installation, and damage to the seal faces and mounting rings must be avoided
- Place the adjusting ring of mechanical seal at its pre marked position
- Place the grab screw (13) at its position on the adjusting ring, but tight it yet
- The O-rings may be oiled to reduce friction, during installation of the seal. EP-rubber O-rings should not come into contact with oil or grease; In this case lubrication with glycerin or water is recommended.
- Never cover the sliding faces with a lubricant as they must be assembled completely dry, clean and dust-free.
- When pressing in stationery seals, make sure that the pressure distribution is uniform. The O-ring must be fitted using water or alcohol only.
- Crowned drive pins must be replaced whenever the seal is dismantled. During insertion of the stationary seats, especially those of special carbon, care must be taken to exert pressure evenly.
- Now check the distance of seal as shown in the figure and adjust its value as per values given table
- For rest parts follow the above explained procedure as per gland pack version pump

Location of mechanical seal of shaft

- 1) Pump casing
- 2) Stationary seat
- 3) Stationary seat
- 4) Gland plate
- 5) O-ring
- 6) Shaft
- X. Mechanical seal
- 1.6 Abutment ring
- 1.7 Abutment ring fixing screw

Pump	Mech.seal	Distance	on the shaft	Pump	Mech.seal	Distance	n the chaft	
Pump	Diam.		(L)	Pump	Diam.	Distance on the shaft (L)		
	(Ø dw)	MG1	M74		(Ø dw)	MG1	M74	
SCP 50-220 HA	28 mm	16.5 mm	26 mm	SCP 200-390 HA	75 mm	30 mm	37 mm	
SCP 50-180 HA	32 mm	17.5 mm	26 mm	SCP 200-440 HA	75 mm	30 mm	37 mm	
SCP 50-340 HA	32 mm	17.5 mm	26 mm	SCP 200-460 HA	75 mm	30 mm	37 mm	
SCP 50-340 DS	38 mm	20 mm	26 mm	SCP 200-550 HA	75 mm	30 mm	37 mm	
SCP 65-390 HS	38 mm	20 mm	26 mm	SCP 200-480 HA	75 mm	30 mm	37 mm	
SCP 80-230 HA	38 mm	20 mm	26 mm	SCP 200-560 HA	95 mm	36 mm	42.8 mm	
SCP 80-200 HA	38 mm	28 mm	26 mm	SCP 200-660 DV	95 mm	36 mm	42.8 mm	
SCP 80-380 DS	42 mm	20 mm	N.A.	SCP 250-250 HA	50 mm	20.5 mm	42.8 mm	
SCP 80-340 HA	38 mm	20 mm	26 mm	SCP 250-390 HA	75 mm	30 mm	37 mm	
SCP 80-360 DS	48 mm	20 mm	26 mm	SCP 250-360 HA	75 mm	30 mm	37 mm	
SCP 100-270 HA	38 mm	20 mm	26 mm	SCP 250-450 HA	95 mm	36 mm	42.8 mm	
SCP 100-280 HA	38 mm	20 mm	26 mm	SCP 250-570 HA	95 mm	36 mm	42.8 mm	
SCP 100-360 HA	38 mm	20 mm	26 mm	SCP 250-700 DV	100 mm	37 mm	42.8 mm	
SCP 100-400 HA	38 mm	20 mm	26 mm	SCP 250-740 DV	100 mm	37 mm	42.8 mm	
SCP 100-410 DS	55 mm	35 mm	N.A	SCP 300-330 HB	75 mm	30 mm	37 mm	
SCP 125-290 HA	50 mm	20.5 mm	27.5 mm	SCP 300-380 HA	75 mm	30 mm	37 mm	
SCP 125-330 HA	38 mm	20 mm	26 mm	SCP 300-400 HA	75 mm	30 mm	37 mm	
SCP 125-440 HA	38 mm	20 mm	26 mm	SCP 300-490 HA	95 mm	36 mm	42.8 mm	
SCP 125-470 HA	60 mm	28 mm	32.5 mm	SCP 300-570 HA	95 mm	36 mm	42.8 mm	
SCP 125-460 DS	65 mm	40 mm	N.A	SCP 300-660 DV	115 mm	N.A.	42 mm	
SCP 150-290 HA	50 mm	20.5 mm	27.5 mm	SCP 350-500 HA	95 mm	36 mm	42.8 mm	
SCP 150-390 HA	60 mm	28 mm	32.5 mm	SCP 350-470 HA	95 mm	36 mm	42.8 mm	
SCP 150-350 HA	60 mm	28 mm	32.5 mm	SCP 400-540 HA	95 mm	36 mm	42.8 mm	
SCP 150-440 HA	60 mm	28 mm	32.5 mm	SCP 400-480 HA	95 mm	36 mm	42.8 mm	
SCP 150-580 HA	75 mm	30 mm	37 mm	SCP 400-550 HA	100 mm	37 mm	42.8 mm	
SCP 150-530 HA	75 mm	30 mm	37 mm	SCP 400-710 HA	100 mm	37 mm	42.8 mm	
SCP 150-460 DS	60 mm	28 mm	32.5 mm	SCP 400-660 DV	130 mm	N.A.	42 mm	
SCP 200-310 HA	60 mm	28 mm	32.5 mm					
SCP 200-320 HA	60 mm	28 mm	32.5 mm					
SCP 200-370 HA	60 mm	28 mm	32.5 mm					
SCP 200-360 HB	60 mm	28 mm	32.5 mm					

9.5.4 R e –assembly of the pump (Mechanical seal version pump)

For assembling mechanical seal version pump follow the same procedure as done for gland pack version pump. Difference in assembly of mechanical seal pump is as follows:

Reassembly of mechanical seal is as follows:

- After placing the top half casing (1) at its position and tightening the studs (29)
- Slide in the gland plate (15) at its position and tight its studs
- Now fix the flushing tubes (35) to the mechanical seal gland plate (15)
- Rest procedure is same as explained above for gland pack version pump

NOTE:

While assembling stainless steel component, molybdenum-disulphide paste should be applied to prevent galling/seizure and also to facilitate easy removal in future.

NOTE:

Change the gasket each time when the pump is opened.

9.6 Recommended spare parts

In case of standard operation, we recommend the following list of spare part regarding the period of functioning.

- For 2 years of normal operation:
- Mechanical seal or Packing, ball bearings and the different gasket required for the dismounting of the pump.
- For 3 years of normal operation:
- Mechanical seal or Packing, ball bearings and the different gasket required for the dismounting of the pump, wear rings and their nuts. For the pumps equipped with Gland packing, include the gland plate and lubrication spacer.
- For 5 years of normal operation:

- Take the same lot of part as for 3 years and add the shaft and impeller.
 - The maintenance of the split case pumps is easier than other pump types. Then in order to facilitate this operation we strongly recommended purchasing a batch of part with the pump in order to reduce the shut down timing.

It is strongly recommended to purchase the original spares parts from WILO Mather and Platt. In order to avoid any mistake we invite you to supply with any spare parts demand, the information mentioned on the data plate of the pump and / or motor.

	l	l	1
No.	Description	Quantity	Recommended Spare Parts
	Casing top half	1	
	Casing bottom half	1	
	Impeller	1	
	Shaft	1	
	Neck ring (Wear ring)	2	‡
	Impeller key	1	
	Shaft sleeve	2	
	O-ring	2	
	Spacer sleeve	2	
	Sleeve nut	4	
	Stuffing box bush	2	
12	Gland packing	Set	+
	Logging ring	2	
	Gland	2	
	Stud for gland	2	
16	Bearing end cover (Drive End)	1	
17	Bearing (Drive End)	1	‡
	Bearing housing (Drive End)	1	
	Thrust collar	1	
20	Bearing end cover (Non Drive End)	1	
21	Stud for bearing end cover	1	
22	Bearing (Non Drive End)	1	‡
23	Lock washer	1	‡
24	Lock nut	1	‡
25	Bearing housing (Non Drive End)	1	
26	Hexplug	_	
27	Air cock	1	‡
28	Hex screw for jacking	2	
	Studs for split flange	_	
30	Coupling key	1	
	Gasket	1	‡
	Water thrower	1	
33	Steady pin	_	
34	Stud coupling	4	
35	Sealing connection (Flushing Pipe)	2	‡
	Hex screw for bearing housing	8	
37	4 way valve	2	‡
38	Neck ring pin	2	‡
	Coupling guard	1	‡

Recommended spare parts (mechanical seal version)							
No.	Description	Quantity	Recommended Spare Parts				
1	Casing top half	1					
	Casing bottom half	1					
3	Impeller	1					
	Shaft	1					
5	Neck ring (Wear ring)	2	+				
	Impeller key	1					
7	Shaft Sleeve	2					
8	O-ring	2					
9	Spacer Sleeve	2					
	Sleeve nut	4					
	Stuffing box bush	2					
12	Mechanical seal	1	+				
13	Grab screw	2	+				
14	Gland plate	2	+				
15	Stud for gland	2					
16	Bearing end cover (Drive End)	1					
17	Bearing (Drive End)	1	+				
18	Bearing housing (Drive End)	1					
19	Thrust collar	1					
20	Bearing end cover (Non Drive End)	1					
21	Stud for bearing end cover	1					
22	Bearing (Non Drive End)	1	+				
	Lock washer	1	+				
	Lock nut	1	+				
25	Bearing housing (Non Drive End)	1					
26	Hex plug	_					
	Air cock	1	#				
	Hex screw for jacking	2					
	Studs for split flange	_					
30	Coupling key	1					
31	Gasket	1	#				
	Water thrower	1					
	Steady pin	_					
34	Stud coupling	4					
	Sealing connection (flushing pipe)	2	#				
	Hex screw for Bearing Housing	8					
37	4 way valve	2	#				
38	Neck ring pin	2	#				
	Coupling guard	1	#				

10 Faults, causes and remedies

Symptoms	Possible cause of trouble and remedies (Each number is defined in the table below)
 Pump does not deliver water.	1,2,3,4,6,11,14,16,17,22,23
 Insufficient capacity delivered.	2,3,4,5,6,7,8,9,10.11.14.17,20,22,23.29,30,31
 Insufficient pressure developed	5,14,16,17,20,22,29,30,31
 Pump loses prime after starting.	2,3,5,6,7,8,11,12,13
 Pump requires excessive power.	15,16,17,18,19,20,23,24.26,27,29,33,34,37
 Stuffing box leaks excessively.	12,13,24,26,32,33,34,35,36,38.39,40
 Pump vibrates or it is noisy.	2,3,4,9,10,11,21.23,24,25.26.27,28,30,35,41,42,43, 44,
	45,46,47
 Bearings have short life.	24,26,27,28,35,36,41,42,43,44,45,46,47
 Pump overheats and seizes.	1,4,21,22,24.27,28,35,36,41

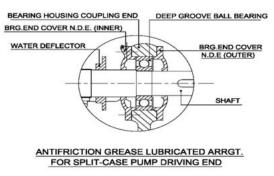
Causes		Remedies
1	Pump not primed	Ensure that casing is fully filled and water comes out from air-
		cock.
2	Pump or suction pipe not completely filled with liquid	Check leaking foot valve in case of negative suction
3	Suction lift too high.	Reduce by lowering pump elevation or increase Water level.
4	Insufficient margin between pressure and vapor pressure.	Check that NPSH available is at least 1 meter more 1 meter more than NPSH required.
5	Excessive amount of air in liquid.	Check the reasons and eliminate. Gas gets entrapped in liquid. Air may be entering through suction joints.
6	Air pocket in suction line.	Ensure pipe fully filled and there is nobend for negative suction.
7	Air leaks into suction line	Tighten pipe joints with solution.
8	Air leaks into pump through stuffing boxes.	Ensure stuffing box sealing.
9	Foot valve too small or leaking.	Replace / Attend.
10	Foot valve partially clogged.	Clean
11	Inlet of suction pipe insufficiently submerged.	Ensure adequate submergence such that foot valve is not
12	Water seal pipe clogged.	Clean or change.
13	Logging ring is improperly located in stuffing	Position logging ring centrally under sealing holes of stuffing
	box, preventing sealing fluid from entering to form seal.	box.
14	Speed too low.	Check motor RPM, supply frequency, Motor nameplate speed should be as specified on pump nameplate.
15	Speed too high.	Check motor RPM and supply frequency.
16	Direction of rotating wrong.	Check correct direction of rotation for motor before coupling
17	Total head of system higher than design head of pump.	Check the causes and refer to M&P. Measure with pressure gauge.
18	Total head of system lower than pump design	Check the causes and refer to M&P. Measure with pressure
10	head.	gauge.
19	Specific gravity of liquid different from design.	Refer to M&P.
20	Viscosity of liquid different from design.	Refer to M&P
21	Operation at very low capacity.	Check the causes and refer to M&P, Operate pump at rated
		duty.
22	Parallel operation of pumps unsuitable for such	Refer to M&P with characteristics curves of pump.
	operation.	
23	Foreign matter in impeller.	Open and clean.
24	Misalignment.	Check with Dial gauge should be within limits and without
		undue pipe stresses.
25	Foundations not rigid.	Check, vibration on Baseplate, check hollowness.
26	Shaft bent.	Dismantle and check, Replace shaft.

Causes		Remedies
27	Rotating part rubbing on stationary part.	Incorrect assembly, correct the assembly.
28	Bearing worn.	Check lubrication, shaft run out, alignment, replace if required
29	Wearing rings worn.	Replace.
30	Impeller damaged.	Replace.
31	Casing gasket defective, permitting internal leakage.	Replace.
32	Shaft or shaft sleeves worn or scored at packing.	•
33	Packing improperly installed.	Use correct grade and size of packing
34	Type of packing incorrect for operating condition.	Use correct grade and size of packing.
35	Shaft running' out of center because of worn bearings or misalignment.	Rectify.
36	Rotor out of balance, causing vibration.	Balance the rotor.
37	Gland too tight, resulting in no flow of liquid to lubricate packing.	Adjust gland. Ensure sealing water flow
38	Cooling liquid not being provided to water-cooled stuffing boxes.	Provide.
39	Excessive clearance at bottom of stuffing box between shaft and casing, causing packing to be forced into the pump.	Check pumps assembly.
40	Dirt or grit in sealing, liquid leading to scoring of shaft or shaft sleeve.	Provide clean liquid for flushing.
41	Excessive thrust caused by mechanical failure inside pump or by failure of hydraulic balancing device, if any (in case of multistage pump etc.)	Check pump operation and assembly
42	Excessive grease or oil in antifriction bearing housing or lack of cooling, causing excessive bearing temperature.	Attend.
43	Lack of lubrication.	Provide proper lubrication.
44	Improper installation of antifriction bearings (Damage, incorrect assembly of stacked bearings, use of unmatched bearings as a pair etc.)	Rectify or replace bearing.
45	Dirt in bearings	Investigate the cause and clean bearing.
46	Rusting of bearings from water in housing	Arrest water ingress.
47	Excessive cooling of water – cooled bearing, resulting in condensation of atmospheric moisture in bearing housing.	Reduce cooling water flow.

11 Decommissioning and recycling

The disposal of all material or debris must be done in order to protect the environment.

The Wilo Mather and Platt's pumps do not contain any dangerous substances. The major part of the pump is recyclable. The disposal and recycling of the pump sets must be done in accordance with the local inforce regulations.


The dismounting must be done by qualified personal.

Clean and decontamination must be achieved before any transportation or recycling

Annexure 1

Standard and Optional Bearing Arrangements

Fig. 11.1

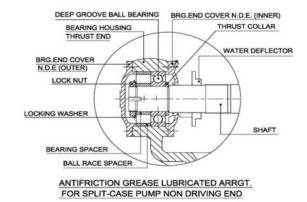
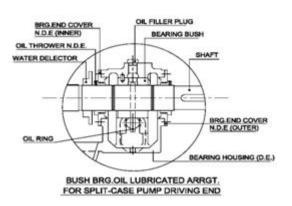



Fig. 11.2

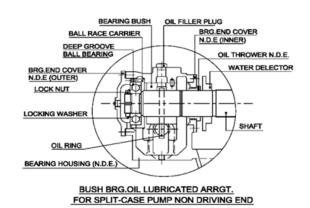
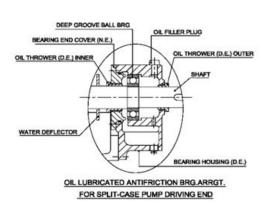
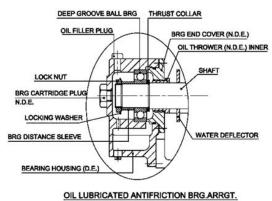




Fig. 11.3

FOR SPLIT-CASE PUMP NON DRIVING END

5 Product information

5.1 Data plate

 	wilo	Marking + Plant About of the Mijo dissop
Type-		
OA No		
Q _{m³/h}	ŀ	l m
RPM-		
M	ade by Wilc)
		nps Ltd. India
⊕		+

5.3 General description

Limits of usage of the standard range

The technical features of the product have been described in the offer made for this product, especially the fluid compatibility. Please refer to this:

Property	Value	Remarks
Speed	2900, 1450, 980 RPM	Model dependent
Discharge nominal diameters DN	up to 1200 (mm)	
Flange standard	PN 10/16/25	ISO 7005-2, as needed
Limit of fluid temperature (min. /max.)		
Mechanical seal version [°C]	-8 up to +120	
-Gland packing version [°C]	-8 up to +105	
Limits of ambient temperature (min. /max.) [°C]	-16 up to +40	other on request
Ambient humidity	< 90 %	other on request
Max. operating pressure	16 bar, generally	25 for some models
Motor insulation class	F	other on request
Motor protection level	IP 55	
Electrical protection for motor	-	required in place (in accordance with local regulation)
Acoustic pressure level, (In accordance with		Refer to the data plate on the
motor performances)		motor on in technical leaflets
Standard fluid allowed	Central heating liquid in accordance with VDI 2035, cooling water. Cold water	Standard version
	Mixture water/glycol up to 40 % of volume. Temp ≤ 40°C for concentrations between 20% and 40% vol. Contact Wilo Mather and Platt pumps for all other	Standard version
	aids	Only for special version
Electrical connections	3~230V, 50Hz (≤4kW)	Other frequency, voltages,
	3~400V, 50Hz (≥5,5kW)	please contact us

Product Description

For Wilo Mather and Platt range of Split case pumps Only few parts are changed.

1. Neckring

For both single and two stages Split case pumps of Wilo Mather and Platt, Tung and Groove type neckrings are used. These neckrings are located in the bottom half of the casing by half-spigot (Tung and groove) and its rotation is restricted by flat face of the top casing.

2. Rotating Element

The rotating element consist of a shaft on to which an impeller is placed and arrested at its position with a key to avoid free rotation with respective of rotation of the shaft. Renewable shaft sleeves are provided on both side to protect the shaft from corrosion and erosion. The impeller is locked at its position by sleeve, sleeve nuts and cowl nuts, which have threads left/right handed as per the direction of rotation of shaft. The pump rotor is supported on deep groove ball bearings on either side of the shaft. Bearings are located in the bearing housing, which are attached to the end of the pump casing. Stuffing box bushes are provided on either side of the shaft on the sleeve and is located in the bottom half of the casing in half-spigot. The purpose of stuffing box bush is to guide the liquid toward the impeller eye. Whereas the back face of the stuffing box provides support to gland packing. Water thrower is placed after gland plate on both side of shaft.

3. Bush Bearing

For special applications or on request HSC pumps can be supplied with bush bearing arrangement instead of antifriction bearings.

Fig 11.2 shows typical arrangement of bush bearing arrangement for HSC pumps.

Under normal conditions the bearing bush of the rotating element are uniformly loaded and provided that an adequate supply of clean oil is maintained with the bearing housings, the bearing will usually operate until wear is approximately 150% the original design clearance without detriment to mechanical performance of the pump.

The most positive indication of the loss in bearing efficiency will be given by an increase in level of vibration. This increase may be gradual and difficult to detect or sudden and prominent. But when an increase is detected the reason must be investigated because it is a symptom that the bearings may

require renewal even if the allowable degree of wear previously indicated has not been reached. The white metal lined bearing bushes should be inspected for:

- a. Excessive clearance by measuring clearance between shaft and bearing bush.
- b. Deep axial or radial grooving which can lead to interrupted oil supply.
- c. Chipping of white metal lining. If clearance has become excessive or if bearing is not usable the same must be renewed.

After renewing the bushes, blue matching must be achieved with the shaft to ensure uniform contact. Also check clearances and maintain the record.

When the rotating element is carried by two ring oiled bush bearings, lubrication of the bearings is by oil contained within the housings. These bearings may be in plain leaded bronze or in Bronze/CI lined with white metal and are split along centerline. Diametric clearance should be 0.25 mm to 0.3 mm.

To permit the bush bearings to be overhauled without completely removing the bearing housings, each bearing housing and bearing bush is split along the axis. In each bearing the top half bearing bush is slotted to accommodate an oil ring, which rests on the shaft and dips into the oil contained by the housing. Rotation of the pump shaft induces rotation of the ring, causing it to pass through the oil. Oil adheres to the ring and is carried up with it to be distributed on the journal surface of the shaft. Non-driving side, bush also supplies oil to anti friction thrust bearing.

HSC pumps can also be offered in mechanical seal variant. For disassembly and assembly of mechanical seal please refer section 9.5.3

Disassembly of Pump

Disassembly of the split case pumps with antifriction bearing is same to as explained in sections 9.3.1, 9.3.2 and 9.3.3.

For Bush bearing arrangement few steps are changed for disassembling the pump.

Initial steps are same as explained in section 9.3.1 for disassembling the top casing.

Disassembly of Rotor

Before staring disassembly of bush bearing arrangement of pump remove all connections connected to the bearing housing

Drive End bearing

- First of all drain out the oil filled in the housing carefully is a clean container.
- First unscrew the bolts and remove the bearing end cover (outer) of drive end.
- Now unscrew the bolts and slide back the bearing end cover (inner) of drive end housing.
- Now remove the top bearing housing along with the top half of the bearing bush.

Non-Drive End bearing

- Similarly, unscrew and remove the bearing end cover (outer) of non drive end bearing housing.
- Now unscrew the bolts and slide back the bearing end cover (inner) of non drive end bearing housing.
- Unlock and remove the locknut and lock washer.
 Now remove the top bearing housing along with the Top-half of the bearing bush.
- Now remove the antifriction bearing using proper tools.

Now, in-order to disassemble the rotor, first remove the bearing end covers (inner) along with oil thrower from both ends. Then, remove the water thrower and follow the similar procedure as explained in section 9.3.2 or 9.3.3 based sealing arrangement.

Reassembly of Bush bearing housing

- For reassembling the rotor follow the procedure given in section 9.5.1 and 9.5.2 according to sealing arrangement up to assembly of water thrower.
- Then insert the bearing end cover (inner) along with oil thrower and oil ring on both side of shaft.
- Insert the bottom half of the bearing bush.
- Now place the rotor on the bottom half of the casing. And place the oil ring at its place on both ends.
- Now place the top half of the bearing bush and check for the alignment.
- Now check for the free rotation of the rotor.
- Now on the non drive end place the antifriction bearing carefully and lock it at its position with lock washer and lock nut.
- Place the top half of the bearing housing on the bottom half of the bearing housing.

- Place the inner and outer bearing end cover on both drive and non drive ends.
- Fix the screws and tight them properly.
- Make sure that the oil drain plug is placed at its position and fill both bearing housings with adequate amount of oil and proper grade.

Kindling check the free rotation of pump in case of bush bearing arrangement after filling the oil of proper grade in the housing (ISO Grade 46 oil).

Manufacture	Bush type Bearings	Grease Lubricated Bearing
Indian Oil Corporation	Servo System-46	Servogem-2/3
Hindustan Petroleum	Enclo-46	Lithon-2/3
Bharat Petroleum	Hydral-46	Multipurpose Grease-3

Flange loads

MAXIMUM ALLOW Moment [Nm]	VABLE FO	ORCES ON	N HSC PUI	MPS, FLAN	IGES IN C	AST IRON	Forces [N	l] and					
				of Flange Moments									
Flange size [mm]	_	550	600	650	700	750	800	825	900	950	1000	1050	1100
	Fx	13128	13795	14685	15130	15575	16020	16131	16354	16643	16955	17244	17555
nozzle	Fy	5118	9011	9456	9790	10124	10235	10346	10680	11036	11392	11770	12171
	Fz	10791	11348	11904	12349	12571	12794	12905	13128	13350	13595	13840	14107
	Fr	18913	20025	21138	21805	22250	22918	23140	23585	24030	24542	25054	25610
	Mx	8228	8432	8704	8976	9248	9520	9792	10064	10363	10669	10982	11308
	Му	6324	6460	6664	6800	6970	7004	7038	7344	7575	7813	8058	8316
	Mz	4318	4420	4624	4828	4896	4964	4998	5168	5345	5528	5712	5909
	Mr	11220	11492	11900	12240	12512	12784	13056	13464				
Flange size [mm]		1150	1200	1250	1300								
	Fx	17867	18201	18534	18868								
nozzle	Fy	12571	12972	13395	13840								
	Fz	14351	14618	14863	15130								
	Fr	26144	26700	27279	27857								
	Mx	11642	11982	12335	12702								
	Му	8575	8847	9126	9411								
	Mz	6106	6317	6528	6752								
	Mr												

Annexure 2

No.	Pump	CG	PG	PM	AC	CDS	CDD	CD	G
1	80/100 ASN H	3/8	3/8	1/2	3/8	1/2	1/2		3
2	80/100 ASN H	3/8	3/8	1/2	3/8	1/2	1/2		3
	•	3/8	3/8	1/2	3/8	-			
3	4/5 LONO					3/8	3/8		3
4	125/150 AST H	3/8	3/8	1/2	3/8	1/2	1/2		3
5	6/8 CME	3/8	3/8	1/2	3/8	3/4	3/4		
	6/8 CME MK2	3/8	3/8	1/2	3/8	3/4	3/4		
6	200/250 DST	3/8	3/8	1	3/8	3/4	3/4		3
7	250/250 AST	3/8	3/8	3/4	3/8	3/4	3/4		3
8	10/12 ALE MK1	3/8	3/8	1	3/8	1/2	1/2		3
9	10/12 EME (DV)	3/8	3/8	1	3/8	1	1		1.
10	200/300 BST	3/8	3/8	3/4	3/8	3/4	3/4		3
11	350/450 BST	3/8"	3/8"	1"	3/8"	1"	1"		
12	12/14 ALE	3/8"	3/8"	1"	3/8"	1"	1"		
13	14/16 ALE MK2	3/8	3/8	1	3/8	1	1		
14	14/16 CME	3/8	3/8	1	3/8	1	1		1.
15	14/16 EME (DV)	3/8	3/8	1.1/2	3/8	1	1		1.
16	14/18 CME	3/8	3/8	1	3/8	1	1		3
17	14/18 EME	3/8	3/8	1.1/2	3/8	1	1		1.
18	14/18 EME H (DV)	3/8	3/8	1.1/2	3/8	1	1		1.
19	16/18 DME DV	3/8	3/8	1.1/2	3/8	1	1		
20	16/20 EME (DV)	3/8	3/8	1	3/8	1	1		1.
20	16/20 EME-H (DV)	3/8	3/8	1.1/2	3/8	1	1		
21	16/20 LONO T-60 MK1	1/2	1/2	1	3/8	1	1		
22	16/20 LONO T-30 MK1	3/8	3/8	1	3/8	1	1		
22	18/20 CME	3/8	3/8	1.1/2	3/8	1	1		1.
23	18/20 CME MK2	3/8	3/8	1.1/2	3/8	1	1		1.
23	18/20 DME (DV)	3/8	3/8	1	3/8	1	1		
24	18/20 DME	3/8	3/8	1	3/8	1	1		
25	500/600 AST	3/8	3/8	1.1/2	3/8	1	1		
26	500/600 BST	3/8	3/8	1.1/2	3/8	1	1		
27	500/600 CST	3/8	3/8	1.1/2	3/8	1	1		
28	20/20 ALE	3/8	3/8	1	1/2	1.1/4	1.1/4		1.
29	20/24 DV CME	1/2	1/2	1.1/2	3/8	3/4	3/4		
30	500/600 EME	1/2"	1/2"	1 1/2"	3/8	1	1		
31	20/24 DV MEDI	3/8	3/8	1.1/2	3/8	1	1		
32	20/24 MEDI T1	3/8	3/8	1	1/2	1	1		1.
33	24/24 ALE	3/8	3/8	1	1/2	1.1/4	1.1/4		
34	24/24 ALE MK1 (DV)	3/8	3/8	1	1/2	1.1/4	1.1/4		
35	24/24 CME	3/8	3/8	1	1/2	1.1/4	1.1/4		
36	24/24 CIVIE 24/30 DV	3/8	3/8	1	3/8	1.1/4	1.1/4		
	24/30 DV LONO	3/8	3/8						
37				1	3/8	1	1		
38	24/30 DV LONO TB MK1	3/8	3/8	1	3/8	1	1		3
39	28/28 LONO	3/8	3/8	1	3/8	1	1		
40	30/30 ALE	3/8	3/8	1	1/2	1	1		
, 1	30/30 ALE-L	3/8	3/8	1	1/2	1	1		
41	30/30 ALE T DV	3/8	3/8	1	1/2	1	1 1/2		
42	30/36 DV LONO	3/4	3/4	1	3/4	1.1/2	1.1/2		1.
43	33/36 LSL	3/8	3/8	1	3/8	1.1/2	1.1/2		
44	36/36 DV LONO (BMC) 36/36 DV LONO MK1 (RCF)	3/8 3/8	3/8 3/8	1.1/2 1.1/2	3/8 3/8	1.1/2 1.1/2	1.1/2 1.1/2		
45	(BUSH BRG.)								

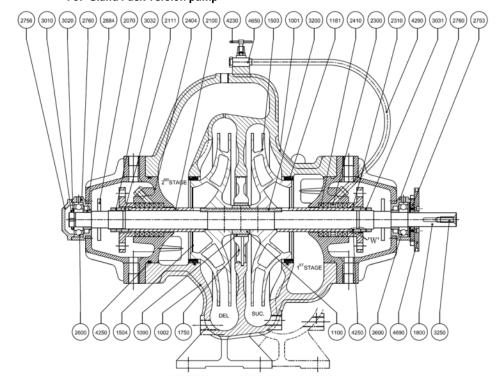
Connectio	n Details								
No.	Pump	CG	PG	РМ	AC	CDS	CDD	CD	GD
47	36/36 DV LONO MK2	3/8	3/8	1.1/2	3/8	1.1/2	1.1/2		3/4
48	36/36 DV LONO MK3	3/8	3/8	1.1/2	3/8	1.1/2	1.1/2		3/4
49	36/36 DV MK4 (99/1802& 3)	3/8	3/8	1.1/2	3/8	1.1/2	1.1/2		3/4
50	36/42 DV LONO	1/2	1/2	3/4	3/4	1.1/2	1.1/2		1
51	42/42 DV LONO	3/8	3/8	1	1	1	1		1
52	48/48 DV LONO	3/8	3/8	1	1	1	1		1
53	48/54 DV LONO	3/8	3/8	1	1	1	1		1
54	4/5 MEDI MK2	3/8	3/8	1/2	3/8	3/8	3/8		1/2
55	9/11 MEDI	3/8	3/8	1	3/8	1/2	1/2		3/4
56	80/100 GST	3/8	3/8	3/4	3/8	1/2	3/4	3/4	1/2
57	100/150 GST	3/8	3/8	3/4	3/8	1/2	1/2	1/2	3/4
58	150/200 GST 2-STAGE	1/2	1/2	3/8	3/8	3/4	3/4	3/4	3/4
59	150/200 GSN	3/8	3/8	3/4	3/8	1/2	1/2	1/2	3/4
60	250/300 GST (DS)	3/8	3/8	1	3/8	1	1	1	1.1/4
61	6/8 GME 2-STAGE	3/8	3/8	1	3/8	3/4	3/4	3/4	3/4
62	6/80 GME	3/8	3/8	1	3/8	3/4	3/4	3/4	3/4

CG: Compound Ground; **PG**: Pressure Gauge; **PM**: Priming; AC: AirCock; **CDS**: Casing Drain (Suction); **CDD**: Casing Drain (Delivery); **CD**: Casing Drain; **GD**: Gland Drain

Bearing Details

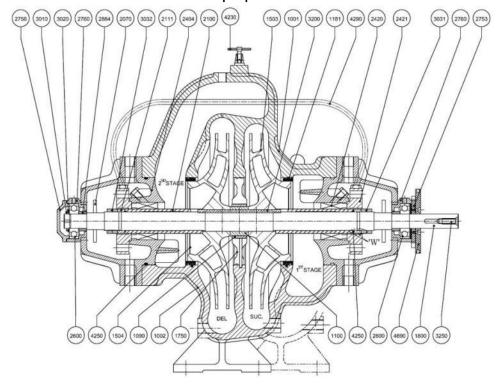
g Details Model		Bearings	Lubrication	_	Oil quantity in litres		
Model	DRIVE END	NON-DRIVE END	Lubrication	NDE	DE		
80/100 ASN H	6305 2Z	6305 2Z	Grease				
80/100 CSN	6305	3305	Grease				
4/5 LONO	N-206	6305	Grease				
125/150 AST H	6306	6306	Grease				
6/8 CME MK2	6308	6308	Grease				
6/8 CME	6308	6308	Grease				
200/250 DST	6314	6314	Grease				
250/250 AST	6308	6308	Grease				
10/12 ALE MK1	6311	6311	Grease				
10/12 EME (DV)	6316	3316	Grease				
200/300 BST	6308	6308	Grease				
350/450 BST	6314 2Z	6314 2Z	Grease				
12/14 ALE	6311 2Z	6311 2Z	Grease				
14/16 ALE MK2	6314	6314	Grease				
14/16 ALE SP MK1	6314	6314	Grease				
14/16 CME (DV)	6313	3313	Grease				
14/16 CME	6316	6316	Grease				
14/16 EME (DV)	6316	7216	Grease				
14/18 CME			Oil				
· · · · · · · · · · · · · · · · · · ·	Bush Brg	Bush Brg+6316	Oil	3-4	3-4		
14/18 EME	Bush Brg	Bush Brg+6313		3-4	3-4		
14/18 EME	6316	6316	Grease				
14/18 EME H (DV)	Bush Brg	Bush Brg + 6315	Oil	4-5	4-5		
14/18 EME H	Bush Brg	Bush Brg + 6315	Oil	4-5	4-5		
16/18 CME	6316	6316	Grease				
16/18 DME DV	6319	6319	Grease				
16/20 EME	6316	3316	Grease				
16/20 EME H	6321	3319	Grease				
16/20 LONO T-60 MK1	Bush Brg	Bush Brg / 6313	Oil				
16/20 LONO T-30 MK1	6414	6414	Grease				
18/20 CME MK2	6316	6316	Grease				
18/20 DME	6319	6319	Grease				
500/600 AST	6319	6319	Grease				
500/600 BST	6319	6319	Grease				
500/600 CST	6319	6319	Grease				
20/20 ALE	6316	6316	Grease				
20/24 DV CME	6319	6319	Grease				
500/600 EME	Bush Brg	Bush Brg + 6315	Oil	4-5	4-5		
500/600 EME	6319	6319	Grease				
20/24 DV MEDI	6319	3319	Grease				
20/24 MEDI T1	6316	6316	Grease				
24/24 ALE	Bush Brg	Bush Brg + 6315	Oil	4-5	4-5		
24/24 ALE MK1 (DV)	6319	6319	Grease				
24/24 CME	6319	6319	Grease				
24/30 DV LONO	Bush Brg	Bush Brg + 6318	Oil	6-7	6-7		
24/30 DV LONO TB MK1	NU324	7224 BCB	Grease				
24/30 DV MEDI	Bush Brg	Bush Brg + 6318	Oil	6-7	6-7		
28/28 LONO	Bush Brg	Bush Brg	Oil	6-7	6-7		
28/28 LONO	Bush Brg	6318	Oil	6-7	6-7		
28/28 LONO	NU 324	7324 BCB	Grease				
30/30 ALE	Bush Brg	Bush Brg / 6315	Oil	4-5	4-5		
30/30 ALE T DV	6222	3319	Oil	4-5	4-5		
30/36 DV LONO	324	7324	Oil	6-7	6-7		
33/36 LSL	Bush Brg	Bush Brg + 6315	Oil	4-5	4-5		

Model		Bearings	Lubrication	Oil quantity in litres	
	DRIVE END	NON-DRIVE END		NDE	DE
33/36 LSL	6319	6319	Grease		
36/36 DV LONO (BMC)	Bush Brg	Bush Brg / 6318	Oil	6-7	6-7
36/36 DV LONO MK1 RCF	Bush Brg	Bush Brg / 6319	Oil	6-7	6-7
36/36 DV LONO MK1	NU 324 EC	7224BCB	Grease		
36/36 DV LONO MK2	NU 324	7324 BCB	Grease		
36/36 DV LONO MK3	Bush Brg	Bush Brg + 6318	Oil	7-8	7-8
36/36 DV LONO MK3	NU 324	7324 BCB	Grease		
36/42 DV LONO	Bush Brg	Bush Brg + 6318 or 22318	Oil	7-8	7-8
42/42 DV LONO	Bush Brg	Bush Brg + 6318 or 22318	Oil	7-8	7-8
48/48 DV LONO	Bush Brg	Bush Brg + 22318	Oil	7-8	7-8
48/54 DV LONO	Bush Brg	Bush Brg + 6318 or 22318	OIL	7-8	7-8
4/5 MEDI 2-STAGE MK1	NU 307	6405	Grease		
80/100 GST	6306	6306	Grease		
100/150 GST	6308	6308	Grease		
150/200 GST	6311	6311	Grease		
150/200 GSN	6311 2Z	6311 2Z	Grease		
250/300 GST (DS)	6316	7316	Grease		
6/8 GME, 2-STAGE	6314	6314	Grease		
6/80 GME	6314	7314	Grease		

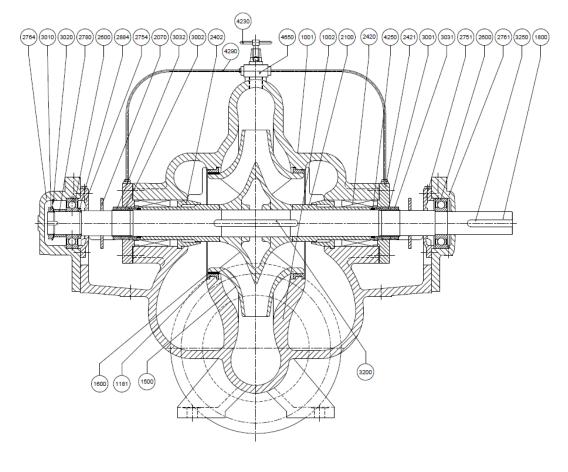

Gland Packing Details

No.	Pump	Gland Packing Size (mm²)	Packing Rings Quantity	No.	Pump	Gland Packing Size (mm²)	Packing Rings Quantity
1	80/100 ASN H	9	5	33	24/24 ALE	20	5
2	80/100 CSN	9	5	34	24/24 ALE MK1	20	5
3	4/5 LONO	10	5	35	24/24 CME	20	5
4	125/150 AST H	10	5	36	24/30 DV MEDI	25	5
5	6/8 CME MK2	12	5	37	24/30 DV LONO	25	5
6	200/250 DST	16	5	38	24/30 DV LONO TB MK1	25	5
7	250/250 AST	12	5	39	28/28 LONO	25	5
8	10/12 ALE MK1	16	5	40	30/30 ALE	20	5
9	10/12 EME	20	5	41	30/30 ALE T DV	20	5
10	200/300 BST	12	5	42	30/36 DV LONO	25	5
11	350/450 BST	16	5	43	33/36 LSL	20	5
12	12/14 ALE	16	5	44	36/36 DV LONO (BMC)	25	5
13	14/16 ALE SP MK1	16	5	45	36/36 DV LONO MK1 (RCF) (BUSH BRG.)	25	5
14	14/16 CME	20	5	46	36/36 DV LONO MK1	25	5
15	14/16 EME	20	5	47	36/36 DV LONO MK2	25	5
16	14/18 CME	20	5	48	36/36 DV LONO MK3	25	5
17	14/18 EME	20	5	49	36/36 DV MK4 (99/1802& 3)	20	5
18	14/18 EME H	20	5	50	36/42 DV LONO	20	5
19	16/18 DME DV	20	5	51	42/42 DV LONO	20	5
20	16/20 EME	20	5	52	48/48 DV LONO	20	5
21	16/20 LONO T-60 MK1	16	5	53	48/54 DV LONO	20	5
22	16/20 LONO T-30 MK1	16	5	54	80/100 GST	10	5
23	18/20 CME MK2	20	5	55	4/5 MEDI MK1	10	5
24	18/20 DME	20	5	56	100/150 GST	12	5
25	500/600 AST	20	5	57	150/200 GST	16	5
26	500/600 BST	20	5	58	150/200 GSN	16	13
27	500/600 CST	20	5	59	6/8 GME	16	5
28	20/20 ALE	20	5	60	6/80 GME	16	5
29	20/24 DV CME	20	5	61	9/11 MEDI	12	5
30	500/600 EME	20	5	62	250/300 GST	20	5
31	20/24 DV MEDI	20	5				
32	20/24 MEDI T1	20	5				

No. Description Quantity Recommended						
		Quanto,	Parts			
	Casing top half	1				
	Casing bottom half	1				
	Impeller	1				
	Shaft	1				
	Neck ring (Wear ring)	2	‡			
	Impeller key	1				
	Shaft sleeve	2				
	O-ring	2				
	Spacer sleeve	2				
	Sleeve nut	4				
	Stuffing box bush	2				
	Gland packing	Set	‡			
	Logging ring	2				
	Gland	2				
	Stud for gland	2				
16	Bearing end cover (Drive End)	1				
	Bearing (Drive End)	1	‡			
18	Bearing housing (Drive End)	1				
19	Thrust collar	1				
20	Bearing end cover (Non Drive End)	1				
21	Stud for bearing end cover	1				
22	Bearing (Non Drive End)	1	‡			
23	Lock washer	1	‡			
24	Lock nut	1	‡			
25	Bearing housing (Non Drive End)	1				
26	Hex plug	_				
	Air cock	1	‡			
28	Hex screw for jacking	2				
	Studs for split flange	-				
	Coupling key	1				
	Gasket	1	‡			
32	Water thrower	1				
33	Steady pin	_				
	Stud coupling	4				
	Sealing connection (Flushing Pipe)	2	‡			
	Hex screw for bearing housing	8				
	Air cock	1	‡			
	Neck ring pin	2	‡			
	Coupling guard	1	‡			


Recommended spare parts (mechanical seal version)					
No.	Description	Quantity	Recommended Spare Parts		
	Casing top half	1			
	Casing bottom half	1			
	Impeller	1			
	Shaft	1			
5	Neck ring (Wear ring)	2	‡		
	Impeller key	1			
	Shaft Sleeve	2			
8	O-ring	2			
	Cowl nut	2			
	Sleeve nut	4			
	Stuffing box bush	2			
12	Mechanical seal	1	‡		
13	Grab screw	2	#		
14	Gland plate	2	#		
15	Stud for gland	2			
16	Bearing end cover (Drive End)	1			
17	Bearing (Drive End)	1	‡		
	Bearing housing (Drive End)	1			
	Thrust collar	1			
20	Bearing end cover (Non Drive End)	1			
21	Stud for bearing end cover	1			
	Bearing (Non Drive End)	1	‡		
	Lock washer	1	‡		
	Lock nut	1	‡		
25	Bearing housing (Non Drive End)	1			
	Hex plug	1-			
	Air cock	1	‡		
28	Hex screw for jacking	2			
	Studs for split-flange	_			
	Coupling key	1			
	Gasket	1	‡		
	Water thrower	1			
	Steady pin	_			
	Stud coupling	4			
	Sealing connection (flushing pipe)	2	‡		
	Hex screw for Bearing Housing	8			
	Air cock	1	±		
	Neck ring pin	2	±		
	Coupling guard	1	‡		

Crossectional Drwings for Two stage pumps For Gland Pack version pump


4690	COUPLING GUARD MOUNTING PL.	1
4650	FOUR WAY PIECE	1
4290	WATER SEALING TUBE	1
4250	'O' RING	5
4250	'O' RING	2
4230	AIR VENT COCK	1
3250	COUPLING KEY	1
3200	IMPELLER KEY	2
3032	SLEEVE NUT (R.H.)	2
3031	SLEEVE NUT (L.H.)	2
3020	LOCKING WASHER	1
3010	LOCK NUT	1
2760	BEARING HOUSING	2
2756	BRG. END COVER (OUTER N.D.E.)	1
2753	BRG. END COVER (OUTER D.E.)	1
2600	DEEP GROOVE BALL BEARING	2
2410	GLAND PACKING	-
2404	STUFFING BOX COVER	2
2310	SOLID GLAND	2
2300	LOGGING RING	1
2111	SPACER SLEEVE	2
2100	SHAFT SLEEVE	1
2070	WATER THROWER	2
1800	SHAFT	1
1750	INTER STAGE RING	1
1504	IMPELLER 2ND STAGE (LH)	1
1503	IMPELLER 1ST STAGE (RH)	1
1181	NECK RING	2
1100	INTER STAGE COLLAR	1
1090	INTER STAGE BUSH	1
1002	CASING BOTTOM HALF	1
1001	CASING TOP HALF	1
ITEM No.	DESCRIPTION	QTY

For Mechanical seal version pump

4690	COUPLING GUARD MOUNTING PL.	1
		-
4290	WATER SEALING TUBE	1
4250	'O' RING	5
4250	'O' RING	2
4230	AIR VENT COCK	1
3250	COUPLING KEY	1
3200	IMPELLER KEY	2
3032	SLEEVE NUT (R.H.)	2
3031	SLEEVE NUT (L.H.)	2
3020	LOCKING WASHER	1
3010	LOCK NUT	1
2760	BEARING HOUSING	2
2756	BRG, END COVER (OUTER N.D.E.)	1
2753	BRG. END COVER (OUTER D.E.)	1
2600	DEEP GROOVE BALL BEARING	2
2421	GLAND PL, (MECH, SEAL COVER)	2
2420	MECHANICAL SEAL	2
2404	STUFFING BOX COVER	2
2111	SPACER SLEEVE	2
2100	SHAFT SLEEVE	1.
2070	WATER THROWER	2
1800	SHAFT	1
1750	INTER STAGE RING	.1.
1504	IMPELLER 2ND STAGE (LH)	1.
1503	IMPELLER 1ST STAGE (RH)	1
1181	NECK RING	2
1100	INTER STAGE COLLAR	1
1090	INTER STAGE BUSH	.1
1002	CASING BOTTOM HALF	. 1
1001	CASING TOP HALF	1
ITEM No.	DESCRIPTION	QTY

For 14–16 ALE Special MK1 CLS pump

	CASING DRAIN PINING	
	CASING DRAIN VALVE	
**	WELD NECK FLANGE	2
4230	AIR VENT COCK	1
4650	FOUR WAY PIECE	1
4290	WATER SEALING TUBE	2
4250	'O' RING	2
3250	COUPLING KEY	1
3200	IMPELLER KEY	1
3032	SLEEVE NUT (R.H.)	1
3031	SLEEVE NUT (L.H.)	1
3020	LOCKING WASHER	1
3010	LOCK NUT	1
3002	COWL NUT (R.H.)	1
3001	COWL NUT (L.H.)	1
2884	THRUST COLLAR	1
2780	BEARING DISTANCE SLEEVE	1
2764	BEARING HOUSING (N.D.E.)	1
2761	BEARING HOUSING (D.E.)	1
2754	BEARING END COVER (N.D.E.)	1
2751	BEARING END COVER (D.E.)	1
2600	DEEP GROOVE BALL BEARING	2
2402	STUFFING BOX BUSH	2
2421	GLAND PLATE	2
2420	MECHNICAL SEAL	2
2100	SHAFT SLEEVE	2
2070	WATER DEFLECTOR	2
1800	SHAFT	1
1600	IMPELLER WEAR RING	2
1500	IMPELLER	1
1181	NECK RING	2
1002	CASING BOTTOM HALF	1
1001	CASING TOP HALF	1
ITEM No.	DESCRIPTION	QTY.

WILO Mather and Platt Pumps Pvt. Ltd.

Mumbai-Pune Road, Chinchwad,

Pune- 411 019, Maharashtra (India)

Tel: +91 20 27442100/1/2/3/4, Fax: +91 2027442111

service.in@wilo.com

www.wilo.in