

Version 2.0
May 2004
Node Object : 0000

0000_20 © 1992 – 2004, Echelon Corporation

LONMARK
®

Functional Profile:
Node Object

SFPTnodeObject

Overview
The Node Object functional profile describes a special type of functional block—
called the Node Object functional block—that is used by network tools to test and
manage all the functional blocks on a device. Figure 1 illustrates a typical device
with a Node Object functional block and three other functional blocks. In this
example, the Node Object functional block can be used to independently manage
functional blocks 1, 2, and 3.

The Node Object functional block may also be used to set the time for the device,
report alarms generated by the device, document the location of the device, and
manage schedules within the device. Manufacturers may add other device-level
functions to the Node Object functional block by implementing manufacturer-
specific functional block members (network variables and configuration
properties).

The Node Object functional block includes a mandatory nviRequest input
network variable and a mandatory nvoStatus output network variable. Other
devices and applications may request a Node Object function by sending a
request to the nviRequest network variable. Upon receiving an update to the
nviRequest network variable, the request is processed and the nvoStatus
network variable is updated with either the results of the request, an in-process
indication, or an error indication. If included in the device, the optional
nvoAlarm and nvoAlarm2 network variables may be updated also. In addition,
the nvoAlarm and nvoAlarm2 network variables report alarm conditions as they
occur. The definition of the nviRequest network variable includes an object ID
field to allow the Node Object to report status and alarm conditions for all
functional blocks on a device.

Only one Node Object functional block is allowed on a device, and it must be
functional-block index zero if it is implemented on a device.

Node

Functional
Block 2

Functional
Block 3

Object

Functional
Block 1

Figure 1 Device Concept

2

Functional-Block Details

Node Object

Mandatory Network Variables

Configuration Properties

Optional Network Variables

nvoStatus
SNVT_obj_status

nv2

nvoAlarm2
SNVT_alarm_2

nv9

nvoDateResync
SNVT_switch

nv11

nvoAlarm
SNVT_alarm

nv4

nvoFileStat
SNVT_file_status

nv6

nvoFileDirectory
SNVT_address

nv8

nviRequest
SNVT_obj_request

nv1

nviTimeSet
SNVT_time_stamp

nv3

nviDateEvent
SNVT_date_event

nv10

nviFileReq
SNVT_file_req

nv5

nviFilePos
SNVT_file_pos

nv7

Mandatory Optional
nciDevMajVer
nciDevMinVer
nciLocation
nciMaxStsSendT
nciNetConfig

Figure 2 Functional-Block Details

LONMARK Functional Profile 3

4

Table 1 Network Variable Details

NV #
(M/O)*

Variable
Name

SNVT
Name

SNVT
Index

Description

1 (M)

nviRequest SNVT_obj_request 92 Requests a particular mode for a
particular functional block in the

device
2 (M)

nvoStatus SNVT_obj_status 93 Reports the status of the requested

functional block in the device
3 (O)

nviTimeSet SNVT_time_stamp 84 Synchronize the device’s internal

real time clock with an external
time source

4 (O)

nvoAlarm

(use nvoAlarm2 for
new device designs)

SNVT_alarm 88 Transmits alarm data for each
functional block on a device

whenever an alarm occurs or is
cleared, and upon request. It is
superceded by nvoAlarm2 for

new designs
5 (O)

nviFileReq SNVT_file_req 73 Requests an operation on a

particular file
6 (O) nvoFileStat SNVT_file_status 74 Reports the status of the last

requested file operation
7 (O) nviFilePos SNVT_file_pos 90 Controls the position of the

read/write pointer in a file
8 (O) nvoFileDirectory SNVT_address 114 Address for the file directory

containing descriptors for
configuration files

9 (O) nvoAlarm2 SNVT_alarm_2 164 Transmits alarm data for each
functional block on a device

whenever an alarm occurs or is
cleared, and upon request.

Replaces nvoAlarm
10 (O) nviDateEvent SNVT_date_event 176 Reports the status of a schedule.

Optional input for devices with
Scheduler functional blocks

11 (O) nvoDateResync SNVT_switch 95 Requests an update for all defined
exceptions via the nviDateEvent
input. Optional output for devices
with Scheduler functional blocks

* M = mandatory, O = optional

LONMARK Functional Profile 5

Table 2 Configuration Property Details

Man.
Opt. *

SCPT Name
NV Name

Type or SNVT

SCPT
Index

Associated NVs ** Description

Opt

SCPTnwrkCnfg
nciNetConfig

SNVT_config_src (69)

25 Entire Functional Block Controls the maximum period of
time before the object status is

transmitted. Zero means disabled
Opt

SCPTmaxSndT

nciMaxStsSendT
SNVT_elapsed_tm

(87)

22 nv2 (O) Controls the maximum period of
time before the object status is

transmitted. Zero means disabled

Opt

SCPTlocation
nciLocation

SNVT_str_asc (36)

17 Entire Functional Block Provides descriptive physical
location information related to the

entire device.
Opt

SCPTdevMajVer
nciDevMajVer
unsigned short

165 Entire Functional Block The major version number for the
device

Opt

SCPTdevMinVer
nciDevMinVer
unsigned short

166 Entire Functional Block The minor version number for the
device

* “Man” = mandatory, “Opt” = optional.
It should be Mandatory for CPs that are Mandatory for an NV that is also
Mandatory. This is also valuable for CPs that apply to the Entire Functional
Block.

** List of NVs to which this configuration property applies.
An “(M)” means that the CP is Mandatory if the NV (to which it applies) is
implemented. An “(O)” means that the CP is Optional if the NV (to which it
applies) is implemented.

6

Mandatory Network Variables

Object Request
network input SNVT_obj_request nviRequest;

This input network variable provides the mechanism to request an operation or a
mode for a functional block within a device. For a listing of all possible request
codes, and for the meaning of the function codes for SNVT_obj_request, see the
SNVT Master List.

A request consists of an object ID (the object_id field) and an object request (the
object_request field). The object ID is the functional block index for a
functional block on the device. If a device has a Node Object functional block,
its functional block index must be zero. The remaining functional blocks are
numbered sequentially, starting with one.

The object request specifies a request function for the functional block identified
by the object ID. The object_request_t definition in the SNVT Master List
defines the available request functions; the following requests are the only
mandatory request functions:

 RQ_NORMAL

 RQ_UPDATE_STATUS

 RQ_REPORT_MASK

If an nviRequest update specifies an unsupported request function, the
nvoStatus output network variable must be updated with the invalid_request
field set to one. Support for the object-disable, self-test, override, and alarm-
reporting request functions is not required.

The request functions are defined as follows:

RQ_NORMAL (mandatory support). If the specified functional block was in
the disabled or overridden state, this request cancels that state,
and returns the functional block to normal operation. If the
functional block was already in the normal state, a request to
enter the normal state is not an error. After device reset, the state
of functional blocks on the device is application-specific.

An RQ_NORMAL request that specifies the Node Object
functional block index is a request for all functional blocks in the
device to leave the disabled and overridden states.

LONMARK Functional Profile 7

RQ_UPDATE_STATUS (mandatory support). Requests the status of the
specified functional block to be sent to the nvoStatus output
network variable. The state of the functional block is
unchanged.

An RQ_ UPDATE_STATUS request that specifies the Node
Object functional block is a request for the status of the device
and all functional blocks on the device. The status bits of the
Node Object (with the exception of invalid_request and
invalid_id) are defined to be the inclusive-OR of the status bits
of all the other functional blocks in the device; with the possible
addition of error conditions and other conditions attributed to the
device as a whole, rather than to any individual functional block.
For example, if comm_failure is supported for the Node Object,
then it should be set when reporting the Node Object functional
block status whenever any of the functional blocks in the device
reports communications failure, as well as when there is a
communications failure at the device level.

RQ_REPORT_MASK (mandatory support). Requests a status mask reporting
the status bits that are supported by the specified functional
block to be sent to the nvoStatus output network variable. A
one bit in the status mask means that the device may set the
corresponding bit in the object status when the condition defined
for that bit occurs. A zero bit in the status mask means that the
bit is never set by the device. For example, if object disable
(RQ_DISABLED) is not supported for a functional block, the
disabled bit in the status mask must be zero for that functional
block. If self-test (RQ_SELF_TEST) is not supported for a
functional block, the fail_self_test and self_test_in_progress
bits in the status mask must be zero for that functional block. If
alarm reporting (RQ_UPDATE_ALARM or asynchronous
notification) is not supported, the in_alarm bit in the status mask
must be zero for that functional block.

An RQ_REPORT_MASK request that specifies the Node
Object functional block requests a status mask that is the
inclusive-OR of supported status bits for the device and all
functional blocks on the device.

RQ_CLEAR_STATUS. Requests all status and report bits for the specified
functional block and in the nvoStatus output network variable to
be cleared. The state of the functional block is unchanged.

 An RQ_CLEAR_STATUS request that specifies the Node
Object functional block clears the status and report bits for all
functional blocks on the device in addition to the nvoStatus
output network variable.

8

RQ_DISABLED. Requests the specified functional block to change to the
disabled state. In the disabled state, output network variables
belonging to the functional block are not propagated to the
network. However, it must be possible to poll the output
network variables of a functional block in this state. In the
disabled state, the functional block must not respond to any
updates received on its input network variables, but it must
support reading and writing of any configuration properties
belonging to the functional block. If the functional block was
already in the disabled state, a request to disable the functional
block is not an error. A functional block may be in both the
overridden and disabled states at the same time. In this case,
output network variables are set to their override values, but the
values are only propagated if they are polled.

An RQ_DISABLED request that specifies the Node Object
functional block is a request to disable all functional blocks in
the device that support the disable function, including the Node
Object functional block. If any of the functional blocks in the
device support the disable function, then those functional blocks
are disabled and invalid_request is not reported. However, if
none of the functional blocks in the device support the disable
function, then invalid_request is reported.

 If the Node Object functional block is disabled, the LONWORKS®
File Transfer Protocol, direct memory read/write, and any other
request to the Node Object functional block, are not disabled. In
addition, status and alarm reporting via the nvoStatus,
nvoAlarm, and nvoAlarm2 outputs is not disabled when the
Node Object functional block is disabled.

RQ_ENABLE. Requests the specified functional block to change to the enabled
state without modifying any overridden behavior. In the enabled
state, output network variables belonging to the functional block
are propagated to the network as defined by the functional block.
If a functional block is both overridden and enabled, the
functional block outputs are set to their overridden values, but
are propagated normally.

 An RQ_ENABLE request that specifies the Node Object
functional block enables only the Node Object functional block
and does not enable any other functional blocks on the device.

LONMARK Functional Profile 9

RQ_SELF_TEST. Requests the specified functional block to execute a self-test
and report the results. If the self-test can be completed in the
same critical section as the receipt of the request, the
fail_self_test bit in the nvoStatus output network variable is set
appropriately, and the self_test_in_progress bit remains zero.
Otherwise, the self_test_in_progress bit is set in the critical
section in which the self-test request is received. When the test
is complete, the fail_self_test bit is set appropriately, and the
self_test_in_progress bit is cleared.

An RQ_SELF_TEST request that specifies the Node Object
functional block is a request to initiate a device-level diagnostic
self-test. The manufacturer defines the testing to be performed.
It may include a self-test of each functional block in the device,
but this is not required.

RQ_OVERRIDE. Requests the specified functional block to change to the
override state. Default values for an override state are usually
configuration properties of individual network variables or
functional blocks. They are often (but not exclusively) specified
by SCPTovrBehave, SCPTdefOutput, and SCPTovrValue
configuration properties. After device reset, the state of
functional blocks on the device is application-specific. A
functional block may be in both the override and disabled states
at the same time. In this case, output network variables are set to
their override values, but the values are only propagated if they
are polled.

An RQ_OVERRIDE request that specifies the Node Object
functional block is a request to override all functional blocks in
the device that implement the override state. An
RQ_OVERRIDE request that specifies the Node Object
functional block does not override the LONWORKS File Transfer
Protocol, direct memory read/write, or any other request to the
Node Object functional block. The nvoStatus output is not
overridden when the Node Object functional block is overridden.

RQ_RMV_OVERRIDE. Requests an override to be removed for the specified
functional block without modifying the enabled state.

An RQ_RMV_OVERRIDE request that specifies the Node
Object functional block is a request to remove the override for
all functional blocks in the device that implement the override
state.

10

RQ_UPDATE_ALARM. Requests the alarm status for the specified functional
block to be sent to the nvoAlarm and nvoAlarm2 outputs, if
present. The state of the functional block, and of any alarms, is
unchanged. See the nvoAlarm and nvoAlarm2 output network
variable description for details on how alarms are reported.

An RQ_UPDATE_ALARM request that specifies the Node
Object functional block requests the alarm status for the highest
priority device-level alarm for the nvoAlarm output, and
requests all active alarms for the nvoAlarm2 output. An active
alarm is an alarm that has an alarm_type value that is not equal
to AL_NO_CONDITION. If the nvoAlarm output is
implemented, and the nvoAlarm2 output is not implemented,
and the device does not have any device-level alarms, then an
RQ_UPDATE_ALARM request that specifies the Node Object
functional block is invalid. If the nvoAlarm2 output is
implemented, and multiple alarms are active when an
RQ_UPDATE_ALARM request that specifies the Node Object
functional block is received, then the nvoAlarm2 output is
updated once with a Header alarm (alarm_type set to
AL_HEADER), then updated once per active device-level
alarm, then updated once per active functional block alarm, and
then updated once with a Footer alarm (alarm_type set to
AL_FOOTER). The Header and Footer alarms are not sent if
only a single alarm is active, or if no alarms are active. If no
alarms are active, a single alarm update is sent with alarm_type
set to AL_NO_CONDITION. Device-level alarms may be
total/service-interval alarms, for example. See the SNVT Master
List for more details of SNVT_alarm and SNVT_alarm_2.

RQ_CLEAR_ALARM. Requests the alarm state of the functional block to be
cleared, and the nvoAlarm and nvoAlarm2 outputs to be
updated to indicate no alarms for the functional block. The state
of the functional block is unchanged. If any alarm conditions are
still present for the functional block, the alarms are reported
again as they are detected. If any alarms are active immediately
following an RQ_CLEAR_ALARM request, the active alarms
are reported as described for the RQ_UPDATE_ALARM
request.

RQ_CLEAR_RESET. Requests the reset_complete flag in the nvoStatus
output network variable of the corresponding functional block to
be cleared. Further requests have no effect, until the next Reset
sequence has again been executed.

 An RQ_CLEAR_RESET request that specifies the Node Object
functional block clears the reset_complete flags for all
functional blocks on the device.

LONMARK Functional Profile 11

RQ_RESET. Requests the specified functional block to execute a Reset
sequence and report its completion in the nvoStatus output
network variable. The reset_complete flag in the nvoStatus
output network variable is set when the Reset sequence is
complete. The flag must be cleared by an
RQ_CLEAR_RESET request.

An RQ_ RESET request that specifies the Node Object
functional block is a request to execute a Reset sequence for the
device and for all functional blocks on the device, and to report
the completion in the nvoStatus output network variable.

Valid Range
The valid range is any value within the defined limits of SNVT_obj_request.

Default Value
The default value is undefined.

Configuration Considerations
None specified.

Object Status
network output SNVT_obj_status nvoStatus;

This output network variable reports the status for any functional block on a
device. It is also used to report the status of the entire device and all functional
blocks on the device.

A status update consists of an object ID (the object_id field) and multiple status
fields. The object ID is the functional block index as described under
nviRequest. If the object ID is zero, the status of the device itself and all
functional blocks on the device is reported.

The status fields are one-bit bitfields. The only required status fields are the
report_mask, invalid_id, and invalid_request fields; all other status fields are
optional. If an alarm condition is active for a reported functional block, the
in_alarm field is set to one if it is supported, and additional information on the
alarm may be reported by the optional nvoAlarm and nvoAlarm2 outputs.
Following is a description of the required status fields. See the SNVT Master List
for a description of the optional fields.

invalid_request Set to one if an unsupported request code (RQ_xxx) is received
on the nviRequest input network variable.

12

invalid_id Set to one if a request is received for a functional block index
that is not defined in the device. No further checking of the
request code is required when set to one.

report_mask Set to one if an RQ_REPORT_MASK request is received by
the nviRequest input network variable, and the nvoStatus
output network variable is set to contain the status mask. The
status mask is an nvoStatus value that describes the status bits
that are supported beyond the three mandatory status bits. The
status mask consists of all fields in the nvoStatus output
network variable, with the exception of the report_mask,
invalid_id, and invalid_request fields. A one bit in the mask
means that the functional block may set the corresponding bit
in the nvoStatus output network variable when the condition
defined for that bit occurs. A zero bit means that the
functional block may never set the bit.

Valid Range
The valid range is any value within the defined limits of SNVT_obj_status, with
the exception that the report_mask, invalid_id, and invalid_request fields must
be set to one.

Default Value
The default value must be the actual status of the device for all supported fields.
All other fields must be set to zero. The application must update the status such
that a polling of the status, following the request, returns a reasonable value. In a
Neuron® C program, this means setting the status in the same critical section as
the request event is processed. Setting the status may mean setting the actual
result; or, for an RQ_SELF_TEST request, setting the self_test_in_progress
field.

Configuration Considerations
The optional nciMaxStsSendT configuration property specifies a heartbeat for
sending this network variable. If the CP is not implemented, or is implemented
and is set to zero or the invalid value, a heartbeat is not provided.

When Transmitted
The output variable is transmitted when either of the following conditions occurs:

 A request is received by the nviRequest input network variable.

 The heartbeat interval specified by the optional nciMaxStstSendT CP
expires.

When the heartbeat timer expires, the status of each functional block (including
the Node Object functional block) is returned sequentially in round-robin
fashion—one object status per expiration of the timer.

LONMARK Functional Profile 13

Default Service Type
The default service type is unspecified, but acknowledged service is
recommended. It is also a recommendation that the network variable be polled.

Optional Network Variables

Time Setting
network input SNVT_time_stamp nviTimeSet;

This input network variable synchronizes the device’s internal real-time clock
with an external time source.

Valid Range
The valid range for all fields is any value within the defined limits of
SNVT_time_stamp.

Default Value
The default value is the SNVT_time_stamp invalid value.

Configuration Considerations
None specified.

Alarm Output
network output sync SNVT_alarm_2 nvoAlarm2;

or, for legacy devices and legacy support:
network output SNVT_alarm nvoAlarm;

These output network variables transmit alarm data for the device, and each
functional block on the device, to a monitoring device. A message containing all
the data relating to the alarm condition is sent whenever an alarm condition
occurs, or is cleared, and upon the functional block receiving an
RQ_UPDATE_ALARM request via the nviRequest input network variable.

An nvoAlarm2 output must be used for all new device designs that require
reporting of alarm reporting. If desired, an nvoAlarm output can be used in

14

addition to an nvoAlarm2 output to provide an interface to legacy devices
and applications.

An nvoAlarm2 alarm value consists of an alarm type, priority, timestamp,
sequence number, and description. The alarm type specifies the alarm condition,
and is set to AL_NO_CONDITION if there is no active alarm. The timestamp
supports a resolution of up to 1 millisecond and reports the time the alarm
condition occurred if available, the time the alarm was first reported if the time of
the condition is not available but time of report is, or contains an invalid value if
time is not available. The sequence number starts at zero and is incremented by
one for each nvoAlarm2 update; it wraps to zero when it reaches 255. The
sequence number can be used by a receiving device or application to determine if
an alarm update has been missed.

The description consists of a text description of the alarm that can be easily
interpreted by a user via a summary log, historical log, Web page, email message,
or SMS message. Manufacturers may embed manufacturer-specific text error
codes in the description. The description may include references to LONMARK
resource files as described in the SNVT Master List.

The nvoAlarm2 output can report multiple alarms per functional block. If
multiple alarms occur or an RQ_UPDATE_ALARM request is received for a
functional block with multiple active alarms, the nvoAlarm2 output is updated
once with a Header alarm (alarm_type set to AL_HEADER), then updated once
per active alarm, and then updated once with a Footer alarm (alarm_type set to
AL_FOOTER). The Header and Footer alarms are not sent if only a single
alarm is active, or if no alarms are active.

The nvoAlarm output can only report a single alarm per functional block. If
multiple alarms occur, or an RQ_UPDATE_ALARM request is received for a
functional block with multiple active alarms, only the highest-priority alarm is
reported.

Valid Range
The valid range of SNVT_alarm_2 and/or SNVT_alarm.

Default Value
The default value is unspecified.

Configuration Considerations
A heartbeat may be specified for sending this network variable using an optional
nciMaxStsSendT configuration property, or a manufacturer-specific
SCPTmaxSendTime or SCPTmaxSndT CP. If specified, the heartbeat CP
must apply to the nvoAlarm and/or nvoAlarm2 outputs. If a heartbeat CP is
defined and has a value of “0 0:0:0:0” or other invalid value, a heartbeat is not
used.

LONMARK Functional Profile 15

When Transmitted
The output variable is transmitted when any of the following conditions occurs:

 An alarm condition occurs or changes. A change may be due to a change
in an external condition or input, or due to a configuration change.

 An RQ_UPDATE_ALARM request is received by the nviRequest
network variable. A single alarm value with an alarm_type field value
of AL_NO_CONDITION is reported if there are no active alarms.

 The heartbeat interval, specified by an optional heartbeat CP, expires.

The nvoAlarm2 output can report multiple alarms per functional block, so a
single RQ_UPDATE_ALARM request may result in multiple updates to the
nvoAlarm2 output. The outputs may be throttled with a manufacturer-specific
SCPTminSendTime or SCPTminSndT CP that applies to the nvoAlarm2
output. If a throttle is not specified but a heartbeat is, the multiple outputs are
sent at the heartbeat interval. If neither a throttle nor a heartbeat is defined, the
multiple outputs are sent at a manufacturer-defined rate.

Default Service Type
If the nvoAlarm2 output is to be updated at a rate of more than once per event-
loop time interval, it must be declared as a synchronous output.

The default service type is unspecified, but acknowledged service is
recommended.

File Request
network input SNVT_file_req nviFileReq;

This input network variable specifies a requested operation code and file index.
When a request is received, the device performs the requested operation and
returns the status of that operation in the nvoFileStat output network. The
request operation codes are defined in the SNVT Master List, and described in the
Echelon LONWORKS File Transfer Protocol Engineering Bulletin (005-0025-01).
Files are identified with a unique 16-bit number called the file index. Up to
65 535 files can be identified on any device.

This input network variable must be implemented in the Node Object functional
block if the device supports LONWORKS FTP. It must not be implemented if the
device supports the direct memory read/write access method for data files.

Valid Range
The valid range of SNVT_file_req.

16

Default Value
The typical default value is FR_NUL.

Configuration Considerations
None specified.

File Status
network output SNVT_file_status nvoFileStat;

This output network variable transmits the status of the last file-request received
via the nviFileReq input network variable. The returned status codes are defined
in the SNVT Master List, and described in the Echelon LONWORKS File Transfer
Protocol Engineering Bulletin (005-0025-01).

This output network variable must be implemented in the Node Object functional
block if the device supports LONWORKS FTP. It must not be implemented if the
device supports the direct memory read/write access method for data files.

Valid Range
The valid range of SNVT_file_status.

Default Value
The typical default value is FS_NUL.

Configuration Considerations
The Node Object implements the file-request and file-position network variables
as inputs, and the file-status network variable as an output. The device can
therefore act as the Sender or the Receiver in a file transfer, but it cannot act as
the Initiator of a file transfer using these network variables.

When Transmitted
The output variable is transmitted when either of the following conditions occurs:

 During file transfer

 When polled

LONMARK Functional Profile 17

Default Service Type
The default service type is unspecified, but acknowledged service is
recommended.

File Position
network input SNVT_file_pos nviFilePos;

This input network variable controls the position of the read/write pointer in a
file used for random access, and is also used to specify the length of the next file
transfer. The rw_ptr field is a 32-bit value compatible with the Neuron C
s32_type signed 32-bit type. For more details, see the Echelon LONWORKS File
Transfer Protocol Engineering Bulletin (005-0025-01).

This input network variable must be implemented in the Node Object functional
block if the device supports the LONWORKS FTP with random and sequential
access method. It must not be implemented if the device supports the
LONWORKS FTP with sequential access or the direct memory read/write access
methods for data files.

Valid Range
The valid range of SNVT_file_pos.

Default Value
None specified.

Configuration Considerations
None specified.

File Directory Address
network output SNVT_address nvoFileDirectory;

This output network variable reports the starting address of the configuration-file
directory on a Neuron hosted device. It is used when configuration properties are
implemented within configuration files accessed by ANSI/EIA/CEA-709.1 Read
Memory and Write Memory network-management messages. If an
nvoFileDirectory output network variable is implemented on a device, all files
on the device must be accessible using network management read/write
messages. For more details, see Configuration Properties within the LONMARK
Application-Layer Interoperability Guidelines.

18

This output network variable must be implemented in the Node Object functional
block if the device supports the LONWORKS FTP with random and sequential
access method. It must not be implemented if the device supports the
LONWORKS FTP with sequential access or the direct memory read/write access
methods for data files.

Valid Range
The valid range for the file directory address is any value within the user-data
memory space of a Neuron Chip or Smart Transceiver.

Default Value
The typical default value is FS_NUL.

Configuration Considerations
The Node Object implements the file-request and file-position network variables
as inputs, and the file-status network variable as an output. The device can
therefore act as the Sender or the Receiver in a file transfer, but it cannot act as
the Initiator of a file transfer using these network variables.

When Transmitted
The output variable is transmitted when either of the following conditions occurs:

 During file transfer

 When polled

Default Service Type
The default service type is unspecified. Network tools may wish to poll this
network variable for values.

Date Event
network input SNVT_date_event nviDateEvent;

This input network variable reports the status of a schedule. It is an optional
Node Object input for devices with Scheduler functional blocks. It provides the
status of each defined exception to the schedule.

A device implementing a Scheduler may have an nviDateEvent input and an
nvoDateResync output on the Node Object functional block. If provided, the
input shall be used to identify the status of all externally controlled schedules,
and the output shall be used to request a resynchronization of all externally

LONMARK Functional Profile 19

controlled schedules; for example, following a power cycle on a scheduler
device. Up to 256 schedules may be externally controlled. An externally
controlled schedule input shall be ignored or deleted on the second midnight after
its last update.

Valid Range
The valid range of SNVT_date_event.

Default Value
None specified.

Configuration Considerations
None specified.

Date Resynchronization Request
network output bind_info(ackd) SNVT_switch
nvoDateResync;

This network variable requests an update for all defined exceptions to schedules
via the nviDateEvent input. It is an optional output network variable for devices
with Scheduler functional blocks.

A device implementing a Scheduler may have an nviDateEvent input and an
nvoDateResync output on the Node Object functional block. If provided, the
input shall be used to identify the status of all externally controlled schedules,
and the output shall be used to request a resynchronization of all externally
controlled schedules; for example, following a power cycle on a scheduler
device. Up to 256 schedules may be externally controlled. An externally
controlled schedule input shall be ignored or deleted on the second midnight after
its last update.

Valid Range
The valid range of SNVT_switch as a discrete output using the “2-state
interpretation.” For details, consult the SNVT Master List.

Default Value
The default value is “0.0 0” (value=0; state=0).

20

Configuration Considerations
None specified.

When Transmitted
This output variable may be transmitted at any time to request a
resynchronization of all externally controlled schedules. This may be required
after a power cycle or reset.

Default Service Type
The default service type is acknowledged.

Configuration Properties

Network Configuration Source (Optional)
SCPTnwrkCnfg cp_family nciNetConfig;

This configuration property sets the source for network configuration for a
device. The source may be the device itself, using a process called self-
installation, or an external network tool. All devices that support self-installation
must provide this configuration property to allow a network tool to take control
of the device’s network configuration.

A self-installed device updates its own network-addressing information based on
local inputs—with no interaction with other devices on the network during the
installation process. In a typical self-installed system, the only information set at
installation time is a domain number, group number, and possibly a network
variable selector number. The rest of the installation information—including the
majority of the binding information—is set at the time of manufacture. The user
interface at each device is usually very simple; for example, push-button
switches, DIP switches, rotary switches, or a backplane slot ID.

Valid Range
Value Identifier Notes

0 CFG_LOCAL Device will use self-installation
functions to set its own network
address.

1 CFG_EXTERNAL Device’s network address will be
set by an outside source. The
device’s application will not

LONMARK Functional Profile 21

interfere with addresses assigned by
external network tools. The device
must be compatible with any valid
ANSI/EIA/CEA-709.1 protocol
address.

-1 (0xFF) CFG_NUL Value not available.

Default Value
For a self-installed device, the default value is CFG_LOCAL.

Configuration Requirements/Restrictions
This CP cannot be constant, nor can it be restricted to modification by the
manufacturer only.

Maximum Send Time (Optional)
SCPTmaxSndT cp_family nciMaxStsSendT;

Also known as a send heartbeat, this configuration property sets the maximum
period of time that can expire before the functional block automatically updates
the nvoStatus output network variable. This configuration property may apply
to additional output network variables such as the optional nvoAlarm2 output, in
which case the heartbeat applies to all applicable network variables.

Valid Range
Minimum is “0 0:0:0:0”

Maximum is “0 17:59:59:999” (0 days, 17 hours, 59 minutes, 59 seconds, 999
milliseconds).

The day field must remain zero for normal operation. A value of 65 535 in the
day field is an invalid value, and means that the nciMaxStsSendT value should
be ignored. This may imply that a hard-coded default value be used, but the
actual device behavior is manufacturer-specific. The nciMaxStsSendT value
should be interpreted as “0 0:0:0:0” if there are any other non-valid values in any
of the fields. Any variant to this must be stated in the manufacturer’s
documentation for the device.

Default Value
The default value is “0 0:0:0:0” (no automatic update).

22

Configuration Requirements/Restrictions
This CP has no modification restrictions. It can be modified at any time.

Location Label (Optional)
SCPTlocation cp_family nciLocation;

This configuration property identifies the subsystem containing the device. It
provides a more detailed description of the device location than can be provided
by the Neuron Chip’s 6-byte location string. This allows network-recovery tools
to recover subsystem information from a device. The subsystem may be a simple
location name, or may be a hierarchical subsystem name. If a hierarchical
subsystem name is specified, the subsystem hierarchy components must be
separated by periods (.). For example, a device may have an nciLocation value
of “Bldg 1.Floor 2.Rm 29”, representing the Bldg 1/Floor 2/Rm 29 subsystem.
Periods must not otherwise be used in the nciLocation value. Other characters
that cannot be used in the nciLocation value are the backslash (\), colon (:),
forward slash (/), or double-quotation (") characters (however, stylistic
quotation characters can be used, such as „ , “ , ” , « , and »). For very large
networks, subsystem numbers may be used instead of subsystem names, for
example: “1.2.29”. This allows deeply nested hierarchies to fit within the 31-
character limit for SCPTlocation.

If a device has multiple locations, such as a device with multiple remote sensors,
each of the functional blocks on the device may also implement a SCPTlocation
configuration property to identify the location of each of the remote components.
The SCPTlocation configuration property associated with the Node Object
identifies the location of the device itself, whereas the other SCPTlocation
configuration properties identify the locations of their respective hardware
components.

If a device does not have a Node Object functional block, a SCPTlocation
configuration property that applies to the device may be implemented to
document the device location.

Valid Range
Any NUL-terminated ASCII string up to 31 bytes of total length (including
NUL). The string must be truncated if the length does not allow the thirty-first
character to be the NUL (0).

Default Value
The default value is an ASCII string containing 31 NULs (0).

LONMARK Functional Profile 23

Configuration Requirements/Restrictions
This CP has no modification restrictions. It can be modified at any time.

Device Major Version (Optional)
SCPTdevMajVer cp_family nciDevMajVer;

This configuration property provides the major version number of a device. If it
is implemented on a device with a Node Object functional block, it must be a
member of the Node Object functional block. If it is implemented on a device
without a Node Object functional block, it must be implemented as a device
configuration property.

The major version number must be incremented when the network interface for
the device changes.

Valid Range
Any integer number from 0 to 255.

Default Value
The default value is zero.

Configuration Requirements/Restrictions
An nciDevMajVer configuration property must always specify the Constant
flag. The Constant flag means that all devices with the same Standard Program
ID (SPID) will have the same value, while the Device-Specific flag means that
devices with an identical SPID may have different values for that configuration
property (see nciDevMinVer for an example). This means that the major version
is the same for all devices with the same program ID, but the minor version
numbers may be different.

Device Minor Version (Optional)
SCPTdevMinVer cp_family nciDevMinVer;

This configuration property provides the minor version number of a device. If it
is implemented on a device with a Node Object functional block, it must be a
member of the Node Object functional block. If it is implemented on a device
without a Node Object functional block, it must be implemented as a device
configuration property.

24

The minor version number must be incremented when the network interface
remains the same, but the device has a different behavior.

Valid Range
Any integer number from 0 to 255.

Default Value
The default value is zero.

Configuration Requirements/Restrictions
An nciDevMinVer configuration property must always specify the Device-
Specific flag. The Constant flag means that all devices with the same Standard
Program ID (SPID) will have the same value (see nciDevMajVer for an
example), while the Device-Specific flag means that devices with an identical
SPID may have different values for this configuration property. This means that
the major version is the same for all devices with the same program ID, but the
minor version numbers may be different.

Data Transfer
Devices may implement data files that can be transferred to other devices and
applications using the LONWORKS File Transfer Protocol (FTP) with random and
sequential access method, the LONWORKS FTP with sequential access method, or
the direct memory read/write access method. All data files on a device must use
the same access method. The following rules must be followed to enable clients
to determine which access method is supported:

 If LONWORKS FTP with random and sequential access method is used,
the nviFileReq, nviFilePos, and nvoFileStat network variables must be
implemented in the Node Object functional block, and the
nvoFileDirectory network variable must not be implemented in the
Node Object functional block.

 If LONWORKS FTP with sequential access method is used, the
nviFileReq and nvoFileStat network variables must be implemented in
the Node Object functional block, and the nvoFileDirectory and
nviFilePos network variables must not be implemented in the Node
Object functional block.

 If direct memory read/write access method is used, the nvoFileDirectory
network variable must be implemented in the Node Object functional
block, and the nviFileReq, nviFilePos, and nvoFileStat must not be
implemented in the Node Object functional block.

LONMARK Functional Profile 25

Power-up State
During device power-up, the Node Object functional block implementation
should initialize the other functional blocks on the device by resetting/clearing
the status of those functional blocks. The Node Object functional block should
be enabled and unlocked before leaving the Reset tasks, but may optionally be
locked (nvoStatus.locked_out set) during the Reset tasks. Locking other
functional blocks during the Reset tasks is recommended.

Manufacturers must define whether or not alarm states are persistent across
resets. If alarm states are not persistent, alarms may be cleared when a device is
reset. Manufacturers should state the alarm-persistence behavior of a device in
its user documentation.

Boundary and Error Conditions
Commands that are not understood by the device must cause the
nvoStatus.invalid_request status bit to be set.

Additional Considerations
None specified.

26

Echelon, LON, Neuron, LONWORKS, LonTalk, LONMARK, and the LONMARK logo are trademarks of
Echelon Corporation registered in the United States and other countries.

	Overview
	Functional-Block Details
	Mandatory Network Variables
	Object Request
	Object Status

	Optional Network Variables
	Time Setting
	Alarm Output
	File Request
	File Status
	File Position
	File Directory Address
	Date Event
	Date Resynchronization Request

	Configuration Properties
	Network Configuration Source (Optional)
	Maximum Send Time (Optional)
	Location Label (Optional)
	Device Major Version (Optional)
	Device Minor Version (Optional)

	Data Transfer
	Power-up State
	Boundary and Error Conditions
	Additional Considerations

