Pioneering for You

Strategic Business Unit OEM Wilo-Para **/LIN Technical guide Ready for smart integrated solutions Para 15/8-75/LIN wilo EEI = 0.21-Part 3 EE IPX4D 2-75W Imax 0.66 A PN10 TF95 1-230V 50/60Hz 0 50/600 (E

Table of contents

General notes

Index management	<u>3</u>
LIN Bus generalities	<u>4</u>
Hardware	
Hardware definition	<u>5</u>
LIN Frames	
LIN Frames generalities	<u>6</u>
Categories short description	<u>7</u>
Unconditional frames	<u>8</u>
Diagnostic frames	<u>12</u>
Service for reading data (SID 0x22)	<u>14</u>
ightarrow Operation Limitation details	<u>18</u>
ightarrow Fallback mode and Bus sleep	<u>19</u>
ightarrow Wilo part traceability	<u>21</u>
Service for writing data (SID 0x2E)	<u>23</u>
NAD Assignment (SID 0xB0)	<u>25</u>
Read by "Identifier" (SID 0xB2)	<u>26</u>
Save configuration (SID 0xB6)	<u>28</u>
Frame Identifier Range assignment (SID 0xB7)	<u>28</u>
LIN frames content	<u>29</u>
Wilo circulator definition	
Wilo LIN identification	<u>30</u>
LIN transfer function	<u>31</u>
LIN circulator HMI	<u>32</u>
LIN Warning/Error information	<u>33</u>
LIN circulator troubleshooting	<u>35</u>
Referenced documents and Glossary	<u>36</u>

Lin

General notes

Index management

Description of content evolution	Version	Date
Initial release	V01.00	19/06/2019
Renamed Vbat by Vbus for standardization	V01.01	05/06/2020
Correction of data position on Vendor specific part		
More details about Wilo pumps identification and traceability		
Correction of LEN byte value of DID 1036 on SID 0x2E service		
Updated of DID 4098 write trigger time on SID 0x2E service		
Specify NAD range assignment for SID 0xB0 service		
Specify frame identification range assignment for SID 0xB7 service		
Correction of PCI byte value of SID 0xB7 service		
Update Wilo LIN identification for ΔP -c and ΔP -v		
More details on LIN Transfer function		
Update LIN Warning/Error information mainly Blocked rotor, overvoltage		
Specifying voltage range for Wilo-Para R serie	V01.02	21/09/2020
Figures n°7 and n°8 updated		

General note

LIN Bus generalities

Context

Some of the latest Premium heating systems used on the market rely on deeper data exchange in order to improve their global performances. In this context, there are needs to place smart products able to provide data about their settings and status, and also have the ability to adapt their setting to fit with specific customer expectations. For this reason, Wilo, as a leader in developing the LIN communicating pumps, proposes its full range of pumps for OEM small applications, from 6m up to 8m head usable for heating, sanitary, solar and geothermal needs.

LIN Bus background

This communication bus has been developed by the automotive industry and is a well-established standard in industry. Fully specified in the ISO 17987, this independent bus is now personalized for the pump use in heating OEM (for more details about the VDMA definition, see "Referenced Documents" on page <u>36</u>).

Benefits

The LIN Bus pump becomes the obvious candidate for integration into appliances where advanced functionalities rely on a wider data exchange, not limited to just one information.

Via this local bus, our customers will be able to monitor and control the running application with a quick reaction time, manage traceability aspects, handle commissioning activities, make late customization of pump functionalities, collect data to handle maintenance activities (status, history data...), and many others things...

The next pages will provide the detailed description of Wilo pumps' characteristics in order to allow you to implement them in a quick and proper way in your system.

Hardware

Hardware definition

The **pin out** for the signal cable used on Wilo pumps is defined as follow:

Core no. 1 (brown) \rightarrow VbusCore no. 2 (blue or grey) \rightarrow GNDCore no. 3 (black) \rightarrow LIN signal

figure n°1

figure n°2

Standard cable length for LIN: due to EMC requirement the maximum cable length of the VLCP bus considered is < 3m. The pump interface (LIN–Slave) and the master interface (LIN–Master) are defined according to VDMA description and as shown in figure n°2 NB: Wilo LIN transceiver is based on TJA 1021

The bus power supply has to be handled by the master and must follow the below definition:

- 12 to 24 V (typical) : the absolute allowed working range for any voltage at the LIN interface is between 8V to 27V
- each VLCP pump bus slave shall not consume more current than 25mA maximum for LIN communication

WARNING !

For Wilo-Para R (with refrigerant gas use), to ensure to not exceed the maximum temperature allowed on the product, the maximum voltage used on the LIN bus must not overtake 20V

LIN Frames generalities

The handled frames are:

 \rightarrow Unconditional frames

 \rightarrow Diagnostic frames

Frames structures : PID D0 D1 D2 D3 D4 D5 D6 D7 Break Synchronous checksum Response Header figure n°3

The header starts with the break field and ends with the Identifier. The header is always sent by the master. It is composed of :

• The Break field which signals the beginning of a new frame. It shall be at least 13 nominal bit times of dominant value followed by at least one recessive bit.

• The Synchronous field which is a byte with the value 0x55. Synchronisation is needed due to missing clock.

• The PID refers to the frame that will be sent.

The **message response** can be filled either by the master or a slave node.

A frame carries between 1 to 8 bytes of data.

For data entities longer than 1 byte, the entity LSB is contained in the byte sent first and the entity MSB in the byte sent last (little endian).

Unconditional frames have frame ID 0–59 Diagnostic frames have frame ID 60–61 Reserved frames are 62–63

The checksums to be used are:

- Diagnostic frames → classic checksum
- Unconditional frames → enhanced checksum

7 LIN frames

The baud rate to be used for driving a pump is **19200 bps.**

The master shall not request data from the pump slave, with a period lower than 20 ms

For diagnostic frames, the maximum time in between 2 frames according to **Transport Protocol ISO 17987–2** applies, which specifies a timeout of **1000 ms.**

For unconditional frames, any interval < **4 sec** is OK.

At any time, the bus idl period (without any unconditional or diagnostic frames) > 4 sec may be considered as Bus Sleep by any slave node.

Unconditional frames can be split into 2 types:

- Frame from the master to set the pump
- Frame from the master to get data from the pump

PID : The Protected identifier is a byte divided into 2 parts:

the frame identifier and the parity. Bits 0 to 5 are the frame identifier and bits 6 and 7 are the parity.

Categories short description

VDMA Status	Wilo Status	Pump reaction
Mandatory It is mandatory that the signal takes a valid value	✓ : Wilo handles all signal values	Pump must handle all valid signal values
(according to VDMA current definition) even if only a single valid value or only a part of the valid values is handled	(\checkmark) : Wilo only handles some of the values	Pump must handle all valid signal values except the resricted values
Optional It is not mandatory to provide the signal or to	✓ : Wilo handles all signal values	Pump must handle all valid signal values
provide a valid signal value (according to VDMA current definition). If the signal cannot get a valid	(✔): Wilo only handles some of the values	Pump must handle all valid signal values except the resricted values
defined into the VDMA	– : Not handled by Wilo	Pump will not react to demands and/or must provide the « not handled » value of the corresponding signal
Reserved Signal is reserved for other device or other standards	X : Wilo is not using this signal or only for Wilo internal use	Pump will not react to demand

Unconditional frames

Frame from the master to set the pump			
Initial frame ID = 1 (Operational_SET_PUMP)	VDMA status	Wilo status	Note
Operational_SET_PUMP_ Setpoint_SET	Optional	✓	
Operational_SET_PUMP_ ControlMode_SET	Mandatory	(√)	Cst speed handled as a standard on basis version, Cst speed, Δp -c, Δp -v on extended version, Δt not handled
Operational_SET_PUMP_ RotationDirection_SET	Mandatory	(√)	Rotation inversion is available only on extended version
Operational_SET_PUMP_ CommandON_SET	Mandatory	✓	
Operational_SET_PUMP_FUTUREVDMARESERVED	Optional	-	If not defined, the value 0xFFFF shall be transmitted
Operational_SET_PUMP_ FUTURE_RESERVED	Optional	-	If not defined, the value 0xFFFF shall be transmitted
Operational_SET_PUMP_ ManufacturerSpecific	Optional	-	If not defined, the value 0xFFFF shall be transmitted
✓ = All signal values handled $-$ = Signal not handled (✓) = Some signal values handl	led X = Not usable		

Unconditional frames structures

ATIONAL_SET_PUMP	MAST 00 PSB	≥ ₩
Setpoint_SET	0 B 01 02 03 04 05 06 MSB	BYTE 00
ControlMode_SET ptationDirection_SET CommandON_SET	08 09 10 11 12 13 14 1	BYTE 01
TUREVDMARESERVED	5 16 17 18 19 20 21 22 23 24	BYTE 02
	4 25 26 27 28 29 30 31	BYTE 03
	32 33 34 35 36 37 38 39	BYTE 04
	40 41 42 43 44 45 46 47	BYTE 05
lanufacturerSpecific	48 49 50 51 52 53 54 55	BYTE 06
	63 56 57 58 59 60 61 62 MSB	BYTE 07

LIN frames Unconditional

9 LIN frames – Unconditional frames

Frame from the master to get data from the pump

Initial frame ID = 2 (Operational_Status_GET_PUMP)	VDMA status	Wilo status	Note
Operational_Status_GET_PUMP_ActualSetpoint	Optional	1	
Operational_Status_GET_PUMP_ ControlMode	Mandatory	~	Cst speed handled as a standard on basis version, Cst speed, Δp -c, Δp -v on extended version, Δt not handled
Operational_Status_GET_PUMP_ RotationDirection	Mandatory	✓	Rotation inversion is available only on extended version
Operational_Status_GET_PUMP_ OperationalStatus	Mandatory	✓	
Operational_Status_GET_PUMP_ ReadyforOperation	Mandatory	✓	
Operational_Status_GET_PUMP_ WarningPresent	Mandatory	✓	
Operational_Status_GET_PUMP_ ErrorPresent	Mandatory	✓	[Only one of these bits can be set at a time]
Operational_Status_GET_PUMP_ FinalErrorPresent	Mandatory	✓	
Operational_Status_GET_PUMP_ EstimatedRPM	Optional	✓	
Operational_Status_GET_PUMP_ EstimatedHead	Optional	✓	
Operational_Status_GET_PUMP_ EstimatedFlow	Optional	✓	
Operational_Status_GET_PUMP_ FluidTemp	Optional	✓	Not handled value : 0x7FE
Operational_Status_GET_PUMP_ OperationalLimitReached	Mandatory	✓	
✓ = All signal values handled $-$ = Signal not handled (✓) = Some sig	nal values handled	X = Not usable	

Unc	onditional frames s	structures						
d by	BYTE 00	BYTE 01	BYTE 02	BYTE 03	BYTE 04	BYTE 05	BYTE 06	BYTE 07
Send	00 LSB 01 02 03 04 05 06 MSB	08 09 10 11 12 13 14 1	15 16 17 18 19 20 21 22 23	24 25 26 27 28 29 30 31	1 32 33 34 35 36 37 38 39	39 40 41 42 43 44 45 46 47	48 49 50 51 52 53 54 5!	63 5 56 57 58 59 60 61 62 мзв
Operational_Status_GET_ PUMP	ActualSetpoint	ControlMode RotationDirection	ReadyforOperation WarningPresent ErrorPresent FinalErrorPresent	EstimatedRPM	EstimatedHead	EstimatedFlow		Fluid Temp Operational Limit Reached
Technic	al guide – Wilo-Para LIN Bus	 version V01.02 			This document is sub	bject to change without prior	notice. Latest version avail	lable on www.wilo-oem.com

LIN frames Unconditional

Frame from the master to get data from the pump			
Initial frame ID = 3 (ADVANCED_GET_PUMP)	VDMA status	Wilo status	Note
ADVANCED_GET_PUMP_ EstimatedPowerInput	Optional	1	
ADVANCED_GET_PUMP_ PowerOnIndicator	Optional	1	
ADVANCED_GET_PUMP_ EstimatedMainsVoltage	Optional	1	
ADVANCED_GET_PUMP_ FUTUREVDMA_1	Optional	-	Default value : 0x3F
ADVANCED_GET_PUMP_ FUTUREVDMA_2	Optional	-	Default value : 0xFFFF
ADVANCED_GET_PUMP_ FUTUREVDMA_3	Optional	-	Default value : 0xFFFF
ADVANCED_GET_PUMP_ ResponseError	Mandatory	✓	
\checkmark = All signal values handled $-$ = Signal not handled (\checkmark) = Some signal values handled	X = Not usable		

Unconditional frames structures

Frame from the master to get data from the pump			
Initial frame ID = 4 (MANU_SPECIFIC_GET_PUMP)	VDMA status	Wilo status	Notes
MANU_SPECIFIC_ GET_PUMP	Optional	-	0xFFFF FFFF FFFF FFFF
\checkmark = All signal values handled $-$ = Signal not handled (\checkmark) = Some signal values has	andled X = Not usa	ble	

Unconditional frames structures

by ER by			BYT	E 00						B١	TE 01							BY	TE 02							B١	YTE 03	3					I	BYTE	04						BY	/TE 0	5						BYTE	06						BYTE	07		
Send	00 LSB	01 02	03	04	05 (0 06 м	7 5в С	8 09	9 10	0 1	1 12	1	3 14	+ 15	16	1	7 1	8 1	92	0 21	2	2 23	3 24	+ 2	5 20	62	7 2	8 29	30	0 31	32	33	34	35	36	37	38	39	40	41 4	42 4	43 4	44 4	+5 4	5 47	48	49	9 50	51	52	53	54	55	56 53	58	59	60	61 (63 52 мsв
٨P																																																											
PUN																																																											
																															٩																												
																															M																												
CIFIC																															Ľ,																												
SPE																															B																												
MAN																																																											

Diagnostic frames

The VLCP devices handle 6 SID accessible by diagnostic request:

- **0xB0:** Assign NAD is used to resolve conflicting NADs into the LIN bus.
 - This conflict could happen if there are 2 or more VLCP devices on the LIN bus.
 - This service uses the initial NAD which is the last one stored in the pump with the 0xB6 Save Configuration service.

The NAD change is immediately taken into account by the pump. It must be recorded using SID 0xB6 to retain it in case of power off (see <u>page 28</u>). In the case of several pumps being used, the frame IDentifier range can be changed accordingly using SID 0xB7 (see later on <u>page 28</u>).

- **0xB2**: Read information service
- 0x22: Read information service : The service 0x22 addresses certain data with an IDentifier called DID (Diagnostic IDentifier)
- **0x2E:** Write information service
- **0xB6:** The service enables the current device configuration to be saved into a non-volatile space (current NAD, current frame ID assignment)
- **0xB7:** Assign frame ID range is used to set or disable PIDs up to 4 frames.

It is important to notice that the request provides the protected identifier (the identifier and its parity) and not only the identifier. Furthermore, frames with frame identifiers 0x3C and 0x3D (diagnostic frames) can not be changed. Assign frame ID range could be used if there are 2 or more VLCP devices on the bus and if the master needs to request a frame of the VDMA only from one of them.

For diagnostic messages, the requests or the responses can be:

- Single frame (SF) response
- First frame (FF) / Consecutive(s) frame(s) (CF) response.

13 LIN frames – Diagnostic frames

LIN frames Diagnostic

NAD : The NAD is the specific address number of a device connected to the LIN bus.

LIN addressing is achieved with NAD values in the range of 1 to 127.

All pumps handling the VDMA standards have the initial NAD of 0x02, and this value can be changed at any time with the 0xB0 Assign NAD service. All diagnostic frames use a NAD to communicate with a device connected to the LIN bus.

- SID: The Service IDentifier specifies the service requested by the master into a diagnostic frame. The SID identifies the service used.
- RSID : The Response Service IDentifier specifies the content of the response to the diagnostic service requested by the master. For a positive response, the RSID is always SID + 0x40.

Those frames handle the below services:

Diagnostic frames and services overview

SID	Name	VDMA status	Wilo status	Note
0x22	Diagnostic Service read data by IDentifier	Mandatory	(✓)	
0x2E	Diagnostic Service write data by IDentifier	Mandatory	(✔)	
0xB0	AssignNAD	Mandatory	✓	
0xB2	Read by identifier	Mandatory	(✔)	
0xB6	Save Configuration	Mandatory	✓	
0xB7	AssignFrameIdentifierRange	Mandatory	✓	
✓ = All signal v	alues handled $-$ = Signal not handled (\checkmark) = Some signal	nal values handled	X = Not usable	

Technical guide – Wilo-Para LIN Bus – version V01.02

Service for reading data (SID 0x22)

The service 0x22 enables data to be read from the pump. The diagnostic data to read is identified by a data identifier (DID). The following data can be read:

Read requests overview

DID	Requested slave data	VDMA status	Wilo status	Note
01023	Reserved (ISO 14229-1)	Reserved	Х	Not to be used
1024	Manufacturing date and time	Optional	✓	
1025	Pressure control (dpc dpv) max and min pressure	Optional	✓	Data delivered only if $\triangle p$ -c / $\triangle p$ -v are handled
1026	Speed max and min information	Optional	✓	
1027	Flow max and min information	Optional	✓	Data delivered optionally
1028	Accumulated energy consumption	Mandatory	✓	
1029	Accumulated operation time	Mandatory	✓	
1030	Accumulated ON Time	Mandatory	✓	
1031	Power on counter	Mandatory	✓	
1032	Fallback settings	Mandatory	✓	See "Fallback mode and Bus sleep" (<u>p.19</u>)
1033	Product serial number string	Mandatory	✓	
1034	Operation limitation details	Optional	(√)	See "Operation limitation details" (<u>p.18</u>)
1035	Read optional feature support	Mandatory	✓	
1036	Read OEM production information	Mandatory	✓	
1037	Delta T max min information	Optional	-	Data provided only if dT control is handled
1038 4095	Reserved for future VLCP use	Optional	-	
4096 4097	Vendor specific product/unit information	Optional	-	
40988191	Reserved for VLCP vendor specific use	Optional	✓	Wilo specific use : DID4098 "Fallback mode and Bus sleep" (<u>p.19</u>) DID4099 "Wilo part traceability " (<u>p.22</u>)
8192 65535	Reserved for use by other devices on the VLCP bus	Reserved	Х	

 \checkmark = All signal values handled (\checkmark) = Some signal values handled - = Signal not handled

X = Not usable

This document is subject to change without prior notice. Latest version available on www.wilo-oem.com

DID 1024 means: manufacturing date and time

DID 1025 means: maximum and minimum head

	S	LAVE	R	ESP	ON	ISE (SF)											
Bytes		0		1		2		3			4			5		6			7
Bits	0	7	8	15	16	23	24		31	32		39	40	4	7 48		55	56	63
		NAD	- v	40X 0		0x62		dp-c max	•		dp-c min			dp-v max		dp-v min			0×FF

DID 1026 means: maximum and minimum speed

	SL/	VI	ER	ESP	ON	SE (SF)											
Bytes	0			1		2		3		4			5		6			7	
Bits	0	7	8	15	16	23	24	3	L 32		39	40	47	48		55	56	63	
	NAD			0×05		0x62		Speed max LSB		Speed max MSB			Speed min LSB		Speed min MSB			0×FF	

DID 1027 means: maximum and minimum flow

	MAST	ER REC	QUEST	(SF)						SLAV	E RESP	ONSE (SF)				
Bytes	0	1	2	3	4	5	6	7	Bytes	0	1	2	3	4	5	6	7
Bits	0 7	8 15	16 23	24 31	32 39	40 47	48 55	56 63	Bits	0 7	8 15	16 23	24 31	32 39	40 47	48 55	56 63
	NAD	0×03	0x22	0×03	0×04	0×FF	0xFF	0xFF		NAD	0×05	0x62	Flow max LSB	Flow max MSB	Flow min LSB	Flow min MSB	0×FF

Technical guide – Wilo-Para LIN Bus – version V01.02

DID 1028 means: energy consumption

DID 1029 means: operation time

SLAVE RESPONSE (SF) Bytes 0 1 2 3 4 5 6 7 Bits 0 7 8 15 16 23 24 31 32 39 40 47 48 55 56 63 Main Bits 0 7 8 15 16 23 24 31 32 39 40 47 48 55 56 63 Main Main

DID 1030 means: accumulated ON Time

	MA	ST	E	R R	EC	λŊ	ES	T ((SF													
Bytes	0		Γ	1			2			3			4			5			6			7
Bits	0	7	8		15	16	ž	23	24		31	32		39	40		47	48		55	56	63
	NAD			0×03			0x22			90×00			70×0			0×FF			0×FF			0×FF

	SLAVE	RESP	ONSE (SF)				
Bytes	0	1	2	3	4	5	6	7
Bits	0 7	8 15	16 23	24 31	32 39	40 47	48 55	56 63
	NAD	0×04	0x62	ON Time 0 LSB	ON Time 1	ON Time 2 MSB	0xFF	0xFF

DID 1031 means: power on counter

	MAST	ER REC	QUEST	(SF)						SLAV	E RESP	ONSE (SF)				
Bytes	0	1	2	3	4	5	6	7	Bytes	0	1	2	3	4	5	6	7
Bits	0 7	8 15	16 23	24 31	32 39	40 47	48 55	56 63	Bits	0 7	8 15	16 23	24 31	32 39	40 47	48 55	56 63
	NAD	0x03	0x22	0×07	0×04	0xFF	0xFF	0xFF		NAD	40×0	0x62	Power ON Counter 0 LSB	Power ON Counter 1	Power ON Counter 2 MSB	0×FF	0×FF

This document is subject to change without prior notice. Latest version available on www.wilo-oem.com

DID 1032 means: fallback settings

DID 1033 means: product serial number string

	N	٨N	ST	ER	R R	EC	ĮΠ	ES	T ((SI	=)													
Bytes		0			1			2			3			4			5			6			7	
Bits	0		7	8		15	16		23	24		31	32		39	40		47	48		55	56		63
		NAD			0×03			0x22			0×09			0×04			0xFF			0×FF			0xFF	

	S	LAV	ΈI	RE	SP	ON	ISE	(FF)												
Bytes		0		1			2			3			4			5			6			7
Bits	0	7	8		15	16	2	3	24		31	32		39	40		47	48		55	56	63
		NAD		0x10			0×11			0x62			serial String 0 LSB			Serial String 1	•		Serial String 2			Serial String 3

	SL/	W	R	ES	5P(DN	SE	(C	F2)												
Bytes	0			1			2		3			4			5			6			7	
Bits	0	7	8		15	16	2	3 2	4	31	32		39	40		47	48		55	56		63
	NAD			0x22			String 10		String 11	44 A		String 12)		String 13)		String 14	'n		String 15	

More details on page 21

DID 1034 means: operation Limitation details

Technical guide – Wilo-Para LIN Bus – version V01.02

DID 1035 means: read Optional feature support

DID 1036 means: read OEM Production information

	MA	ST	EF	R RE	QU	ES	т	(SF	=)													
Bytes	0			1		2			3			4			5			6			7	
Bits	0	7	8	1	.5 16		23	24		31	32		39	40		47	48		55	56		63
	NAD			0x03		0x22			0×0C			0×04			0×FF			0×FF			0×FF	

	SLAVI	E RESP	ONSE (FF)				
Bytes	0	1	2	3	4	5	6	7
Bits	0 7	8 15	16 23	24 31	32 39	40 47	48 55	56 63
	NAD	0×10	0x0F	0x62	OEM String 0	OEM String 1	OEM String 2	OEM String 3

	s	LA	V	E R	ES	SPO	ЛC	SE	Ξ (CF	1)													
Bytes	Γ	0			1			2			3			4			5			6			7	
Bits	0		7	8		15	16		23	24		31	32		39	40		47	48		55	56		63
		NAD			0×21			OEM String 4			OEM String 5			OEM String 6)		OEM String 7			OEM String 8	'n		OEM String 9	

DID 1037 means: read Delta T max and min setpoint

This document is subject to change without prior notice. Latest version available on www.wilo-oem.com

DID 4098 means: trigger time

	S	LA	V	R	ES	РС	NS	E (SF)												
Bytes		0			1		2			3			4			5			6			7
Bits	0		7	8	1	15]	L6	23	24		31	32		39	40		47	48		55	56	63
		NAD			0×03		0x62			Trigger time LSB	}		Trigger time MSB	;		0×FF			0×FF			0×FF

DID 4099 means: customer specific code

	SLAV	E RESP	ONSE (CF1)				
Bytes	0	1	2	3	4	5	6	7
Bits	0 7	8 15	16 23	24 31	32 39	40 47	48 55	56 63
	NAD	0x21	String 4	String 5	String 6	String 7	String 8	String 9

More details on page 22

SLAVE RESPONSE (FF)

	S	LAV	ER	ESP	ON	ISE (CF	2)													
Bytes		0		1		2		3			4			5			6			7	
Bits	0	7	8	15	16	23	24	3	1	32		39	40	4	7	48	_	55	56	_	63
		NAD		0x22		String 10		String 11			String 12)		String 13			0×FF			0×FF	

\rightarrow Operation Limitation details

The pump has reached a limit if the signal **Operational_Status_GET_PUMP_OperationalLimitatReached** is set to 1 in the unconditional frame **Operational_Status_GET_PUMP**.

In this case, the Operation Limitation details service provides more information about the specificities of the limit reach.

The Operation limitation details is available with the diagnostic service 0x22, DID 1034 described previously.

VLCP list

Bit	Data to read	VDMA status	Wilo status	Note
0	Maximum speed	Optional	✓	If limit reached = 1
1	Minimum speed	Optional	✓	If limit reached = 1
2	Maximum power	Optional	✓	If limit reached = 1
3	Lower medium temperature limit reached	Optional	_	
4	Upper medium temperature limit reached	Optional	-	
5	Upper pump temperature limit reached	Optional	-	
6-15	For future VDMA use	Optional	X	

 \checkmark = All signal values handled - = Signal not handled (\checkmark) = Some signal values handled X = Not usable

Vendor specific part

Bit	Data to read	VDMA status	Wilo status	Note
0	Generator operation	Optional	✓	If active = 1
1	Dry run	Optional	✓	lf active = 1
2	Overload	Optional	✓	lf active = 1
3	Over temperature module	Optional	✓	If limit reached = 1
4-7	Vendor specific	Optional	X	Wilo Reserved – Not to be used by the customer
8	Limitation voltage mains	Optional	✓	If limit reached = 1
9-15	Vendor specific	Optional	_	
	(1) Complexity (1)	a handlad V Naturahla		

 \checkmark = All signal values handled - = Signal not handled (\checkmark) = Some signal values handled X = Not usable

→ Fallback mode and Bus sleep

In the case of communication failure between the master and the pump, the Wilo pumps handle a "Fallback mode". The communication failure is detected according to 2 criterias : Trigger time and Fallback time.

- Trigger time : it is the time after which the pump assumes the LIN communication failure occurs if no LIN frame is on the bus.
- Fallback time : it is the time after trigger time when no LIN frame being on the bus, the pump will go into a specific mode called "Fallback mode".

The trigger time is used to ensure there is no communication on the bus in order to start launching the fallback time.

When delivered, the Wilo standard delivery setting is:

- Pump running, full speed (100%), in speed control mode with a fallback time set to 0 s (whereas the VDMA default value is defined as: Pump Stop, 0%, speed control mode with a fallback time set to 100s).
- This setting can be adjusted later by the customer by LIN communication using the diagnostic service (write request service 0x2E DID 1032).
- Under request, this setting can be modified on Wilo production lines

Wilo trigger time is initially defined @500 ms. It can be read out using read request service 0x22 DID 4098. Wilo trigger time is configurable through LIN Diagnostic command and is then adjusted by the customer depending on its scheduling table.

The trigger time setting shall be linked to the period of the unconditional frames. The trigger time has to be longer than the frame interval to avoid that "normal gaps" in the frame scheduling are considered as communication losses in the slaves.

At the end of "trigger time + fallback time ", the pump will be in fallback mode if no communication has been identified (bus being in sleep mode or not).

This is not connected to the timer for the bus sleep that remains as existing.

In case of no communication, the pump bus will switch to sleep mode after 4s (the sleep mode can also be activated under request, with a specific frame, immediately after the request).

20 LIN frames – Diagnostic frames

Fallback mode diagram Power on **Pump remains** Trigger time Valid signal received no in its previous launch state ⟨t=Trigger time⟩ **Pump remains** no Fallback timer Valid signal received in its previous launch state t=Fallback time yes yes next frame no Valid signal received Pump in defined Fallback mode Fallback mode yes no Valid signal received yes Pump is running according Pump set point **Circulator status** to frame request reached figure n°4

 \rightarrow Wilo Part traceability is based on the below whole number defining the Pump serial number.

Wilo Pump serial number format:

XXXXXXXX * AAAAAALL (*=0x00)

The Wilo part number is written once at the end of the production line, and is never changed during the pump's lifetime. It is made up of 2 groups:

- First group is the product reference (Wilo article number) composed of 7 characters
- Second group is the unique part number (incremental) of 8 characters

Product reference and product unique number are read accessible by LIN communication with the diagnostic service 0x22, DID 1033 according to below tables:

	Μ	AST	ER	R REC	QUE	ST										
Bytes	N	AD		PCI	S	ID	[D1	1	D2	1	03		D4	[05
Bits	0	7	8	15	16	23	24	31	32	39	40	47	48	55	56	63
		NAD		0x03		77X0		0x0		0x08		0×FF		0×FF		0×FF

	SL	AVI	E R	ESP	SNS	5E (FF)									
Bytes	NA	٨D	1	PCI	LE	N	R	SID	[D4	C)5	D	6	1	D7
Bits	0	7	8	15	16	23	24	31	32	39	40	47	48	55	56	63
				0×10	L LAV	TTYN		0x62		String0		TGUIJIC	C+ring 2	2611110		String3
										×	;	×	>	<		×

	SLAV	E RESP	ONSE (CF1)				
Bytes	NAD	PCI	D2	D3	D4	D5	D6	D7
Bits	0 7	8 15	16 23	24 31	32 39	40 47	48 55	56 63
	NAD	0x21	String4	String5	String6	String7	String8	String9
			×	×	×	*	۲	۲

	SLAV	E RE	SPO	ONSE ((CF2)				
Bytes	NAD	PC	1	D2	D3	D4	D5	D6	D7
Bits	0 7	8	15 1	L6 23	24 31	32 39	40 47	48 55	56 63
	NAD	0x22		String10	String11	String12	String13	String14	String15
				٨	А	А	A	L	_

Product date content :

DID1024 is defined according to VDMA definition:

- Year given as a number between 0..65535
- Week of year given as a number between 1..53, FF16 if manufacturing week is not handled
- Day of week given as a value between 1 = Monday .. 7 = Sunday, FF16 if manufacturing day is not handled

Customer traceability:

The customer specific code is a reserved memory location for customers who want their code to be accessible only for reading by LIN communication. Its size is of 14 bytes.

The customer specific code is read only by LIN communication with the diagnostic service 0x22, DID 4099 according to below tables

The customer specific code is written once at the end of the Wilo production line, and is never changed during the pump's lifetime

Service for writing data (SID 0x2E)

The service enables data to be written in the pump. The following data can be writen:

Write requests overview

DID	Data to write	VDMA status	Wilo status	Note
01023	Reserved (ISO 14229-1)	Reserved	Х	
10241031	Reserve for future VLCP use	Optional	_	
1032	Default setpoint, control mode and fallback time for communication failure	Mandatory	(√)	According control mode and rotation direction availability
1033 1035	Reserve for future VLCP use	Optional	_	· · · · · · · · · · · · · · · · · · ·
1036	Write OEM production information	Mandatory	✓	
10374095	Reserve for future VLCP use	Optional	_	
40964097	Vendor specific product/unit information	Optional	_	
40988191	Reserve for future VLCP use	Optional	1	Wilo specific use : DID4098 "Trigger time"
819265535	Reserved for use by other devices on the VLCP bus	Reserved	Х	

 \checkmark = All signal values handled - = Signal not handled (\checkmark) = Some signal values handled X = Not usable

7

String 7

DID 1032 means: write default setpoint, control mode and fallback time for communication failure

DID 4098 means: write trigger time

	M	AST	ER	REC	λŊ	EST	(SI	=)									
Bytes		0		1		2		3	Γ	4			5		6		7
Bits	0	7	8	15	16	23	24	31	. 3	2	39	40	47	48	55	56	63
		NAD		0x05		0x2E		0x02		0×10		Fallback trioner time		Fallback trioger time	MSB	:	UXFF

	SLAV	E RESP	ONSE (SF)				
Bytes	0	1	2	3	4	5	6	7
Bits	0 7	8 15	16 23	24 31	32 39	40 47	48 55	56 63
	NAD	0×05	0x6E	0x02	0TX0	Fallback trigger time LSB	Fallback trigger time MSB	0×FF

6 7

DID 1036 means: write OEM production information

						OEM		OEM		OEN			OEM		OEN			OEM
	SL/	V	R	SP	ON	SE	(SF)										
Bytes	0		1			2		3		4			5		6			7
Bits	0	7	8	15	16	23	3 24	31	32		39	40	47	48		55	56	6
	NAD		UTUE			0x6E		0×0C		40×0			0x42		0×4F			0×FF

3 4

String 3 String 4 5 6

String 5

String 6

As all VLCP have the same initial **NAD** = 0x02, for instance if more than one pump is used in a system, the NAD can be changed by this service in range of 1–125 (0x7D).

The request from the master to change NAD is shown on the master request frame. If the initial NAD, the supplier ID, and the function ID match, the successful reponse sent by the pump is shown on slave response frame.

	MAST	ER REC	QUEST	(SF)						SLA	١VE	RESP	ONSE (SF)				
Bytes	0	1	2	3	4	5	6	7	Bytes	0		1	2	3	4	5	6	7
Bits	0 7	8 15	16 23	24 31	32 39	40 47	48 55	56 63	Bits	0	7	8 15	16 23	24 31	32 39	40 47	48 55	56
	NAD	90×00	0×B0	Supplier ID LSB	Supplier ID MSB	Function ID LSB	Function ID MSB	New NAD		NAD		0×01	0×F0	0×FF	0xFF	0×FF	0×FF	0×EE

	Wilo	WildCard
Supplier ID	0xA9	0x7FFF
Function ID	0x00	0xFFFF
NAD	0x02	0x7F

WildCard values can be used when only 1 slave is connected to the bus

Read by "Identifier" (SID 0xB2)

The service 0xB2, via Identifier bytes, enables data to be read from the pump. The following data can be read:

Read requests overview

ID	Requested slave data	VDMA status	Wilo status	Note
0	LIN product identification	Mandatory	✓	
1	Serial number	Optional	-	
2-31	Reserved in ISO	Reserved	X	
32	Error/warning Information	Mandatory	✓	See "LIN Warming / Error Information" (<u>p.33</u>)
33	Product number (vendor specific numbering)	Mandatory	✓	
34	VDMA profile revision major/minor revision	Mandatory	✓	
✓ = All signal v	-	values handled	X = Not usable	

	Wilo	WildCard	
Supplier ID	0xA9	0x7FFF	
Function ID	0x00	0xFFFF	
NAD	0x02	0x7F	

WildCard values can be used when only 1 slave is connected to the bus

ID 0 means: read LIN product identification

	SL/	V	ER	ESP	ON	ISE (SF)													
Bytes	0			1		2		3			4			5			6			7	
Bits	0	7	8	15	15 16 23				31	32		39	40		47	48		55	56		63
	NAD			0×06		0xF2		Supplier ID LSB	:		Supplier ID MSB			Function ID LSB			Function ID MSB			VARIANT ID	

ID 1 means: read serial number

	MA	١ST	EF	R R	EC	QUI	ES	Т															
Bytes	C			1			2			3			4			5			6			7	
Bits	0	7	8		15	16	1	23	24		31	32		39	40		47	48		55	56		63
				0×06			0xB2			0×01			Supplier ID LSB	:		Supplier ID MSB	-		Function ID LSB			Function ID MSB	

	SL	AV	E	RES	SPO	лс	SE (SF														
Bytes		0	Γ	1			2		3			4			5			6			7	٦
Bits	0	7	8	3	15	16	23	24		31	32		39	40		47	48	ļ	55	56	6	3
		NAD		0x05			0xF2		Serial 0 LSB			Serial 1			Serial 2			Serial 3			0xFF	

ID 32 means: detailed error code identifier

	Ν	IAS	т	ER	R	EC	ĮΠ	ES	Т															
Bytes		0			1			2			3			4			5			6			7	1
Bits	0		7	8		15	16		23	24	-	31	32		39	40		47	48	5	55	56	63	3
		NAD			0×06			0xB2			0x20			Supplier ID LSB	:		Supplier ID MSB			Function ID LSB				

		.AVI	E R	ESI	20	NS	Е (SF														
Bytes		0		1	Τ	2			3			4			5			6			7	
Bits	0	7	8	1	5 1	L6	23	24		31	32		39	40		47	48		55	56		63
		NAD		0x03		0xe7			Error Code LSB			Error Code MSB			0×FF			0×FF			0×FF	

WildCard

Supplier ID	0xA9	0x7FFF
Function ID	0x00	0xFFFF
NAD	0x02	0x7F

WildCard values can be used when only 1 slave is connected to the bus

ID 33 means: product number

ID 34 means: VDMA profile version

	MA	ST	EF	R R	EC	ĮΠ	ES	Т														
Bytes	0			1			2			3			4			5			6			7
Bits	0	7	8		15	16		23	24		31	32		39	40		47	48		55	56	63
	NAD			0×06			0xB2			0x22			Supplier ID LSB	:		Supplier ID MSB	:		Function ID LSB			Function ID MSB

	S	LAV	E R	ESP	01	ISE (SF)										
Bytes		0		1		2		3		4		5		6		7	_
Bits	0	7	8	15	16	23	24	31	32	39	40	47	48	55	56		63
		NAD		0x03		0xF2	VDMA profile	major rev	VDMA profile	minorrev		0xFF		0×FF		0×FF	

Wilo

Save configuration (SID 0xB6)

This service saves the actual LIN configuration (current NAD and current PID assignment).

	SLAVE RESPONSE (SF)										
Bytes	0	1	2	3	4	5	6	7			
Bits	0 7	8 15	16 23	24 31	32 39	40 47	48 55	56 63			
	Ą	(01	ĸF6	ΚFF	ΚFF	ΥFF	ΚFF	ΚFF			
	z	â	Ô	Ô	Ô	Ô	Ô	Ő			

Frame Identifier Range assignment (SID 0xB7)

Assign frame ID range is used to set or disable PIDs up to four frames in the range of 1– 59 (0x3B).

	N	١A	SТ	EF	R RE	QI	UES	т														
Bytes		0			1	Γ	2			3			4			5			6			7
Bits	0		7	8	15	1	6	23	24		31	32		39	40		47	48	5	55	56	6
		NAD			0×06		0×B7			Start Index			PID (index)			PID (index +1)			PID (index + 2)			PID (index + 3)

	SL/	W	E R	RES	P	ON	ISE	= (SF)													
Bytes	0			1			2			3			4			5			6			7	
Bits	0	7	8		15	16		23	24		31	32		39	40	_	47	48		55	56		63
	AD			×01			×F7			Ĕ			Ĕ			ΥF			Ĕ			ž	
	2			•			•			0			0			0			0			0	

LIN frames

LIN frames content

For all details regarding Frame content, please use the Wilo LIN Frame Translate application that can be used on our Wilo website, at the following link:

www.wilo-oem.com

Getting started Translator Interpreter	Wilo Getting started Translator Interpreter
Please select diagnostic or unconditional mode	Unconditional frame interpreter The unconditional interpreter is used to convert hexadecimal values from an unconditional frame into physical values. Fill in the frame (in hexadecimal) C1 F4 E1 FF FF FF FF C8
nconditional frame translator unconditional frame translator is used to convert physical values into hexadecimal.	> interpret Clear all
Fill in your settings Frame to translate Operational_SET_PUMP • Setpoint (from 0% to 100%) 50 Control mode Speed Control • Rotation direction Normal • Command ON •	Effective setpoint (%) 50 Selected mode Speed Control Rotation direction Normal Command ON ON
C1 F4 81 FF FF FF FF FF C8	Future VDMA Reserved 0 Future Reserved 0 Manufacturer specific 0

Wilo LIN identification

A Wilo pump is defined in the communication bus as follow:

Wilo identifier: Supplier ID = 0xA9
 Function ID = 0x00

Initial pump NAD: 0x02
 In case of need, the pump NAD can be changed using diagnostic service

The **control modes** that are available are:

- N-cst mode: standard
- Δp-c mode: LIN Extended only
- **Δp-v mode:** LIN Extended only

Illustration of control modes

N-cst mode is used for application where the speed could be ajusted according to what the network needs to reach the necessary flow (ie. usually used on primary circuit of a heating system)

Assign numbers from www.can-cia.org

 $\Delta p - v$ mode:

 Δp -v mode is used for application where the flow could be variable associated with variable pressure losses (ie. usually used on installation equipped with radiators) 31 Wilo circulator definition

LIN Transfer function

For Speed control (N-cst), the transfer function can be used as described on the transfer curve.

For Δp -c mode, transfer curve is defined for all flow values (as the flow is not impacting the head level for this mode).

For $\Delta p-v$, the transfer curve is defined considering max flow. Obviously, the real head delivered by the pump will then depend on the pump flow according to the $\Delta p-v$ regulation (see hydraulic curve).

The below min and max values can be read by diagnostic service: 0x22. (This is given as an example, the real values must be the ones read from the pump)

Hydraulic values (for example 7.7 m of Head Max) are valid only for cast iron pump housing. For a composite pump housing, see with the "Customer Technical contact" to have data related to composite pump housing used.

figure n°6

Δp–c or Δp–v	Min head	Max head	inflection point Δp-c	inflection point Δp-v
	m	m	%	%
6 m	0,5	6,7	7,5	15
7 m	0,5	7,7	6,5	13
8 m	0,5	8,5	5,9	11,8

LIN circulator HMI

Wilo pumps are able to provide some visual information to help the end user to understand what is **the pump status (see figure n°7)**.

It is defined as follow:

Final error:	The status LED is fixed red	
Error:	The status LED blinks red	
Warning:	The status LED blinks green and red alternately for :	• generator operation, • dry running, • overload motor warning
	The status LED is fixed green for :	• undervoltage warning (> 160 – < 190V) • DC link error

LIN Communication error:

Normal operation: The status

The status LED is **fixed green**

The status LED blinks green

LIN Warning / Error information

According to the VDMA LIN circulator profile, the diagnostic services handle 0xB2 read by Identifier services. The Identifier 32 enables the definition of a warning / error information. Wilo defined them as follow:

LIN warning / Error information overview

code and name	Error type	Short description of warning consequences and/or pump actions
Missing motor windings contact or disconnected electronic box	Final error	Could occur if the plumber disconnect the motor from electronic box or when the motor windings are damaged
Driver fault	Final error	
Over current	Error	Motor current exceeding acceptable limit
Blocked rotor	Error Final error	The pump will try with a routine to unblock itself. The pump is finally blocked after the routine is completed. No more restarting trial until power occurs. Action: try to change the fluid or remove the particles blocking the pump
Loss of synchronization	Error	Temporary situation. Motor will restart by itself
Overload motor	Error	High friction due to mechanical ageing or particles in the medium Action: try to change the fluid or remove the particles blocking the pump
Overvoltage ≥ 263 VAC The pump could stop and, if stopped, must reliably issue the assigned error code – if pump is stopped, it must be able to start when voltage reaches < 263 VAC	Error	The pump could stop until the voltage is back to a normal level Action: check the power supply stability
Undervoltage Voltage drop (dc link) ≤ 160 VAC The pump could stop, but must, after a short time, issue the assigned error code ≥ 170 VAC Pump able to run and start, but possibly with limitations of performance, but not into the function The pump needs to stop status of voltage of ≥ 170 VAC to start rotation	Error	 Fast voltage drop : this occurs when there is a high voltage dip for the DC link voltage detected. If, after the voltage drop, the voltage stays under the restart level, the motor stays stopped. If the voltage rises above the limit, the motor restarts by itself. The relation between drop at the DC link and the main voltage has the following influence factors: kind of high or low impedance power line, tolerances of components and the operation point (main factor) Action: check the power supply stability
	Missing motor windings contact or disconnected electronic box Driver fault Over current Blocked rotor Loss of synchronization Overload motor Overload motor Overvoltage ≥ 263 VAC The pump could stop and, if stopped, must reliably issue the assigned error code - if pump is stopped, it must be able to start when voltage reaches < 263 VAC Undervoltage Voltage drop (dc link) ≤ 160 VAC The pump could stop, but must, after a short time, issue the assigned error code ≥ 170 VAC Pump able to run and start, but possibly with limitations of performance, but not into the function The pump needs to stop status of voltage of ≥ 170 VAC to start rotation	Missing motor windings contact or disconnected electronic box Final error Driver fault Final error Over current Error Blocked rotor Error Final error Over current Loss of synchronization Error Overvoltage Error ≥ 263 VAC Error The pump could stop and, if stopped, must reliably issue the assigned error code - if pump is stopped, it must be able to start when voltage reaches < 263 VAC

LIN warning / Error information overview

Error c	ode and name	Error type	Short description of warning consequences and/or pump actions
8	Over speed	Error	Motor speed over the acceptable limits
9	Turbine mode	Error	<i>Turbine mode: could happen if there is another device generating opposite flow.</i> <i>Action: check the installation/setup</i>
10	Undervoltage	Error	Slow voltage drop : In case of error, the motor stops until the voltage is back to a normal level. Stopping the motor is done in a range around 160V that is dependant on component tolerances, operating point gap in between measured voltage and estimated value from the pump
12	Over temperature motor	Error	In case of the motor gets too hot, the motor stops After a cool down time, the motor restarts by itself
14	Over temperature module	Error	Over temperature: the temperature of the module is too high, pump stops Action: reduce the ambient temperature
15	Over temperature power bridge / components	Error	Over temperature on electronic component: the temperature of some electronic components is too high. Action: reduce the ambient temperature
16	Generator operation	Warning	Generator operation: could happen if there is another device generating direct flow. Action: check the installation/setup
17	Dry running	Warning	Dry running: no fluid in the installation. Action: fill the installation
18	Overload motor	Warning	Overload motor: high friction due to mechanical ageing of particles in the medium Action: clean or change the medium
19	Overtemperature Module	Warning	The temperature of the module is going too high with reduced performances
255	No error present		Pump is running without issue

NB: There is no priority defined by the number ordering

N.B: In the range 160 VAC < U <190/195V

The pump operates. In case of speed or power limitation due to the power supply, the pump returns a status information by activating the OperationalLimitReached into the Unconditional frame. By accessing DID 1034, the master can have access to the explanation regarding the details of the OperationalLimitReached.

LIN circulator troubleshooting

Wilo pumps are designed to provide the best efficiency all through the product's lifetime. If, however, you are facing issues, please to check in the below table what the recommended actions are:

LIN circulator troubleshooting overview

Behavior	Please check how is the status LED – Root cause	Remedy
The pump is running but application doesn't reach the performances	If LED blinks green/red, the pump is still operating but not at full performance due to abnormal conditions	Check if the pump temperature is over the allowed limits Check if the power supply voltage is inside the limits (170V < U < 253V RMS) Check if there is no external flow pushing water at the pump Check if there is no over current exceeding the limit
I plugged in my pump, applied the LIN signal and the pump is not running or the pump was running and is now stopped	If LED is fixed green, the LIN signal is maybe asking the pump to be stopped If LED blinks green, the signal connection is not (or no more) working properly	Check on the master side which LIN signal is provided Check your installation and make sure that the LIN signal is provided to the pump Check the signal cable
	If LED blinks red, the pump is stopped due to external issue. The pump will restart automatically when conditions are ok If LED is fixed red, the pump is stopped due to internal "final" error	Check if the pump temperature is over the allowed limits Check if the power supply voltage is inside the limits (170V < U < 253V RMS) Check if there is no external flow pushing water at the pump Check if there is no over current exceeding the limit. Check on the master side which LIN signal is received from the pump Switch OFF the pump, wait 30s before switching ON the pump. Then through the master side try to start the pump. If the pump LED is still red after a power reset, replace the pump

VDMA 24226 ed 1.0 The VDMA is a German Engineering Association

Glossary

LIN: Local Interconnect Network Frame ID: Frame Identifier ID: IDentifier DID: Data IDentifier SID: Service IDentifier NAD: Node Address for Diagnostic HMI: Human Machine Interface
OEM: Original Equipment Manufacturer
EMC: ElectroMagnetic Compatibility
Speed control: Constant speed control mode
△p-c: Constant pressure control mode
△p-v: Proportional pressure control mode

rpm: Revolution per minute LED: Light Emitting Diode VLCP: VDMA LIN Circulator Profile RMS: Root Mean Square LSB: Least Significant Bit MSB: Most Significant Bit

How can Wilo support you ?

Wilo can provide more support to our customers under request.

Please, contact your local sales contact or use our website: **www.wilo-oem.com**

From our website, you can also obtain information about the Wilo LIN communication Evaluation Kit

wilo

Imagine you already had the solutions today that will be needed tomorrow.

With OEM Solutions, what is visionary is just a step away from reality. As the leading original equipment manufacturer, we see ourselves as part of your business and we know exactly how crucial your processes are. We work with you to develop customized innovative solutions making you a pioneer in your market. We produce these solutions for you at the time you choose, to sus-tainable, top quality. This will benefit your entire business. From senior management to purchasing. From logistics to research and development. Thanks to highly committed teamwork for your success. **OEM Solutions. Let's move. Together**.

Pioneering for You

version V01.02

Wilo Group Strategic Business Unit OEM

Wilo Intec 50 av. Casella F – 18700 Aubigny sur Nère T + 33 2 48 81 62 62 www.wilo-oem.com oem@wilo.com