Pioneering for You

Strategic Business Unit OEM
Wilo-Para **/iPWM
Technical guide

Table of contents

General notes	
Introduction	4
PWM Generalities	5
Hardware	
VDMA 24 224 recommendations	6
PWM Input signal	7
Hardware definition	8
PWM Input Master interface	9
Recommended PWM input Master Interface	10
PWM Output Master Interface	12
Recommended PWM Output Master Interface	13
Control Mode	
PWM Input strategy	14
Data usage	
PWM Output strategy	15
PWM Output : product characteristics	16
PWM Output : warning / error information	17
Troubleshooting	
PWM circulator troubleshooting	19
Wilo circulator definition	
Referenced documents	20
Glossary	20

General notes

Index management

Description of content evolution	Version	Date	
Initial release	V1.0	15/09/2020	

General notes

INTRODUCTION

For advanced heating systems used on the market it is expected to have agile products able to support the continuous improvement activities of global application performances.

In this context, our customers need products able to offer adjustable performances and also provide information about their setting or status.

For this reason, Wilo, based on application expertise, proposes its full range of pump, from 4m up to 13m head, equipped with bidirectionnal PWM external control usable for OEM application whether for heating, sanitary, solar or geothermal needs.

Features :

Based on the DIN IEC 60469–1, the PWM signal is a well-established standard in the OEM heating industry (for more details about the VDMA 24 224 definition, see "*Referenced Documents*" chapter).

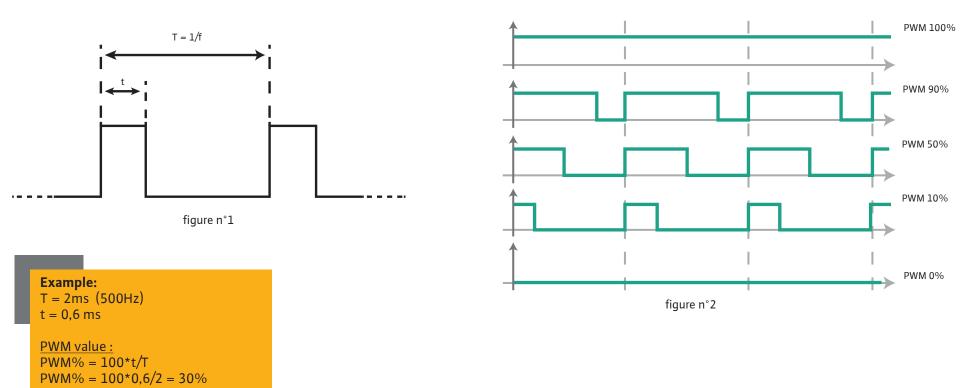
To go further, Wilo has developped the iPWM signal, stands for Intelligent Pulse–Width Modulation, which establishes a bidirectional communication (PWM Input / PWM Output) between pump and application controller.

Benefits:

The iPWM pump becomes the self-evident canditate when adjustable duty point is required to adjust head-flow to just-needed performances and consequently power consumption. But the benefits are also obvious when a step ahead to data sharing is a prerequisite for system optimization by using the pump feedback of current flow rate or power consumption or even pump status.

Thus, taking the benefits of this advanced function, it also opens the doors to appliance architecture optimization via a simplification of flow management, commisionning or maintenance support...

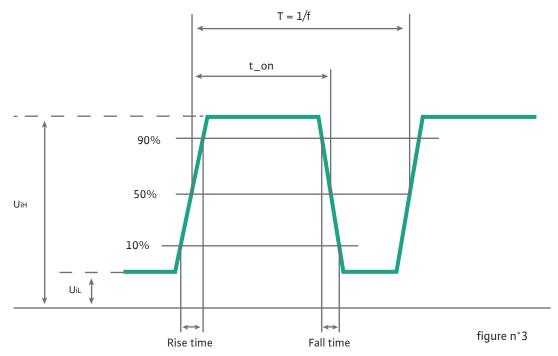
The next pages will provide the detailed description of Wilo pumps' characteristics in order to allow you to implement them in a fast and proper way in your system.


PWM Generalities

External control via PWM signal

The control signal definition is managed by a master controller. The master controller sends a PWM signal as an actuating variable to the Wilo Pump.

The PWM signal generator gives periodic pulses to the pump, according to DIN IEC 60469–1. The actuating value is determined by the ratio between pulse duration and the pulse period. The duty cycle is defined as a ratio without dimension, with a value bewteen 0 ... 1 or 0 ... 100%. This is explained in the following figures with ideal pulses which form a rectangular wave.


In the same maner the pump returns information or status to the master by a second PWM signal.

General notes

VDMA 24 224 recommendations

What are the specifications of PWM signal ? (according to VDMA 24 224)

Interface Specification		
Symbol	VDMA 24 224	
Cable length	< 3 m	
Signal cable section	≥ 0.25 mm ²	
UiH	4.5V – 15V	
UiL	≤lV	
IH	10 mA	
PWM Frequency	100-1000 Hz	
PWM %	0-100%	
Rise and Fall time	≤ T/500	

PWM input frequency f

- f is the frequency at which the input signal is clocked out. It is the inverse of the period T

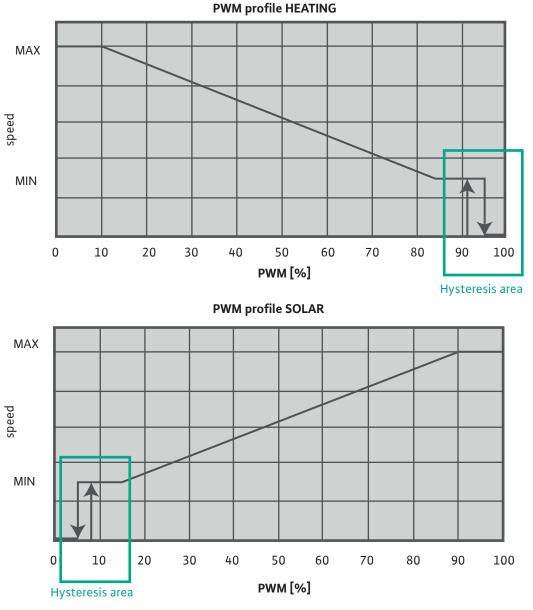
Input voltage upper value UiH

- The upper value of the input voltage above which the signal is evaluated as "ON"

Input voltage lower value UiL

- The lower value of the input voltage indicates below which voltage the signal is evaluated as "OFF"

Resulting input current IH


– IH is the current sunk by the pump interface according UiH

Rise / fall time

- Maximum admissible rise and fall time according to the period to guaranty the information integrity

Technical guide – Wilo-Para iPWM – version V1.0

PWM input signal (according to VDMA 24 224)

Standby mode

The pump can be switched to standby mode "OFF" by the PWM input signal. An advantage of this, compared to powering OFF the pump, will be a faster restart.

Hysterisis switching – ON/OFF

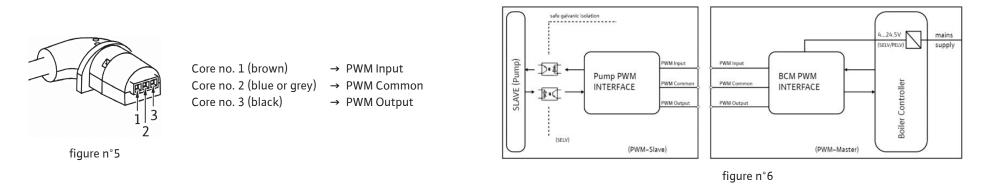

The pump can be switched between MIN speed and standby mode operation by the PWM input signal. To prevent instability, an hysteresis area is mandatory. Driving pump with PWM values in this area is not recommended as two pump states are possible.

figure n°4

Hardware

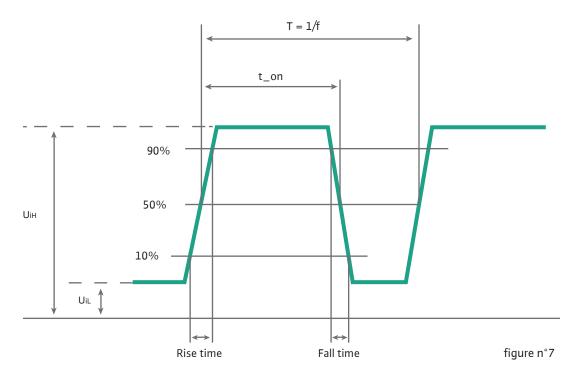
Hardware definition

The pin out for the signal cables used on Wilo pumps is defined as follow :

Standard cable length for iPWM : due to EMC requirement the maximum cable length of the iPWM cable shall be limited to 3m.

The pump interface is defined according to VDMA 24224 description (PWM–Slave). So the Master interface (PWM–Master) need to be defined accordingly.

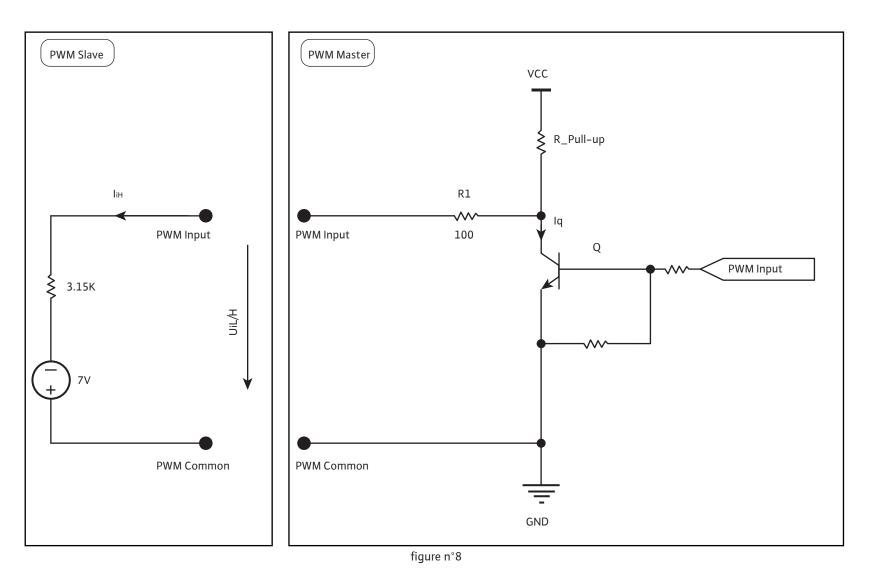
Hardware definition		
Features	Wilo Specification	
Cable length	< 3m	
Signal cable section	≥ 0.25 mm ²	
Signal polarity	Yes	


WARNING !

For Wilo–Para R (with refrigerant gas use), to ensure to not exceed the maximum temperature allowed on the product, the maximum voltage used on the iPWM must not overtake 20V.

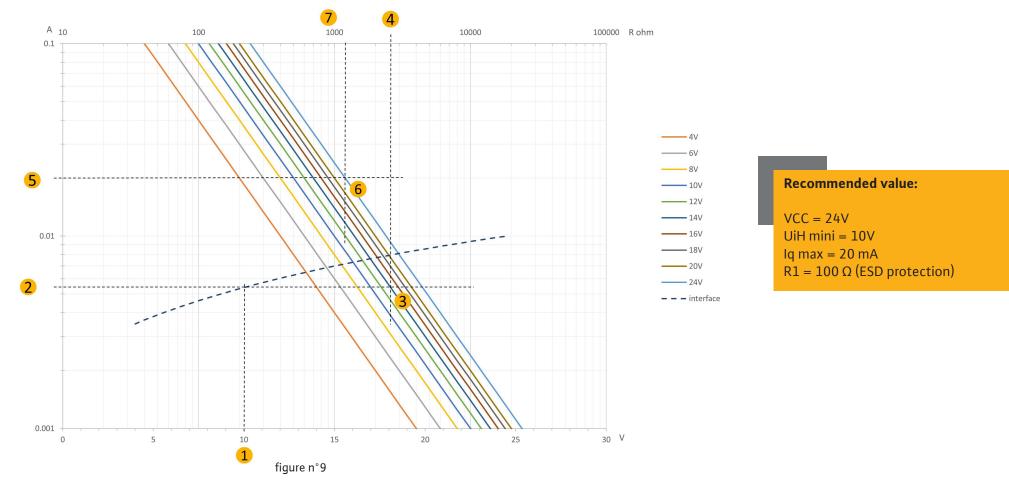
Hardware

PWM Input Master Interface

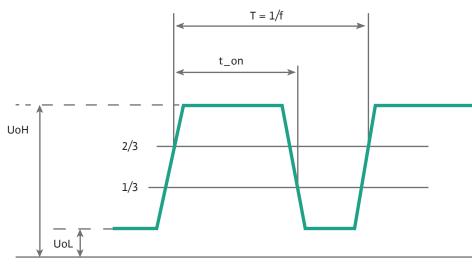

PWM signal coming from the Master according to :

Signal profil description		
Symbol Wilo Specification		
UiH	4V - 24.5V	
UiL	≤1V	
IH	3,5mA – 10 mA	
PWM Frequency	90-5000 Hz	
PWM %	0-100%	
Rise and Fall time	≤ T/500	

Recommended PWM Input Master interface


The PWM Input Master Interface should be designed according to :

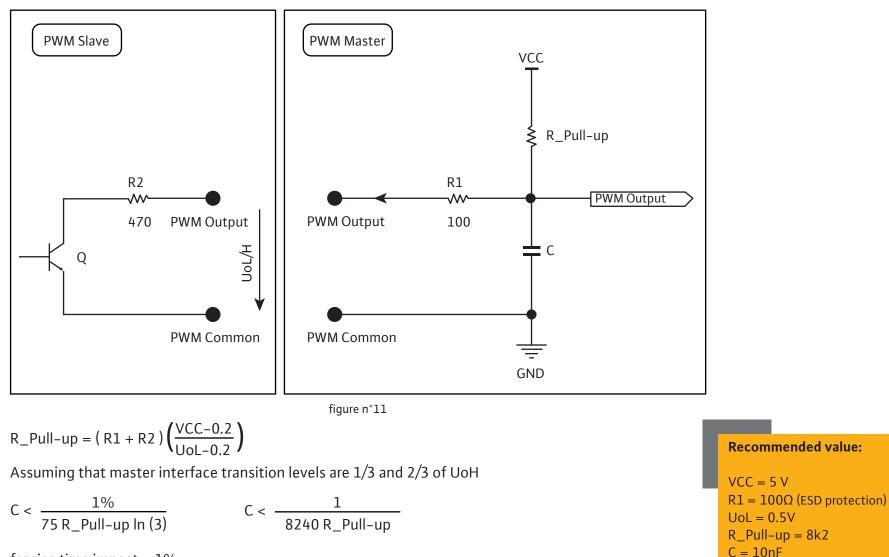
Electrical diagram applicable according to values from Signal profile description, see PWM Input Master Interface chapter


11 Hardware

- R_Pull-up dimensioning method
 - Define the minimum voltage at PWM input UiH 1 i.e 10V.
 Intersection with interface curve give the associated current liH 2
 - Intersection with voltage drop at R_Pull-up i.e (24V-10V) 3 will give the R_Pull-up max 4
 - Define the maximum current in transistor Q. 5
 Intersection with VCC curve i.e 24V 6 will give the R_Pull-up min 7
 - $1K\Omega < R_Pull-up < 2.5K\Omega$ Then the value chosen is $R_Pull-up = 2.2K\Omega$

PWM Output Master Interface

PWM signal coming from the Pump according to :



Recommended PWM Output Master Interface				
Output type Open collector				
High-level voltage of PWM output signal	3V min – 25V max			
Low-level voltage of PWM output signal (iPWM ≤ 1 mA)	≤ 1V			
Maximum current iPWM in normal operation1 mA (to be ensured by customer based on its U value)				
Frequency of PWM output signal	75 Hz (<u>+</u> 2Hz)			
Maximum voltage provided by the boiler in abnormal operation (UoH)	32V			
Duty cycle range of PWM output signal	0100%			
Duty resolution of PWM output signal	≤1V			
Duty cycle accuracy of PWM output signal	± 1% (absolute)			
Maximum current iPWM in abnormal operation (UoL)	10 mA			
Resistor R2 See figure 11	470 Ω			

Hardware

Recommended PWM Output Master interface

The PWM Output Master Interface should be designed according to :

for rise time impact < 1%

PWM Input strategy

Two command strategies are available according cable break function

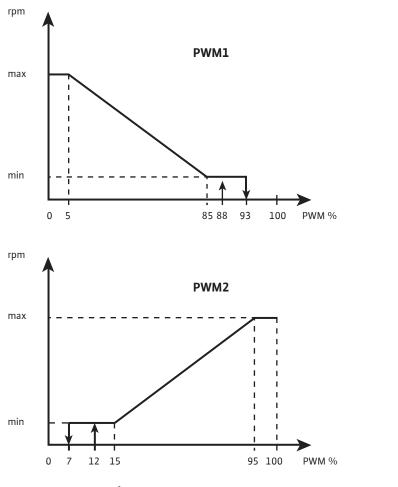
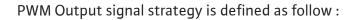


figure n°12

PWM1 transfer function [%]		
% PWM-in	Status	
Cable break	Pump runs at maximum speed	
< 5	Pump runs at maximum speed	
5-85	Pump speed decreases linearly from max to min	
85-88	Pump runs at minimum speed	
88-93	Hysteresis. Pump operations not defined	
93-100	3–100 Pump stops (Standby)	

PWM2 transfer function [%]			
% PWM-in Status			
Cable break	Pump stops (standby)		
< 7	Pump stops (Standby)		
7-12	Hysteresis. Pump operations not defined		
12-15	Pump runs at minimum speed (start-up)		
15-95	Pump speed decreases linearly from max to min		
> 95	Pump runs at maximum speed		


Heating / Solar

The choice of transfer function profile has to be defined based on application purpose taking care of the expected cable break function

I.e: In heating application, it is normaly expected that the pump runs at full speed when communication is lost (PWM1 profile). While for solar application, the pump must stops (PWM2 profile)

iΡWM

PWM Output strategy

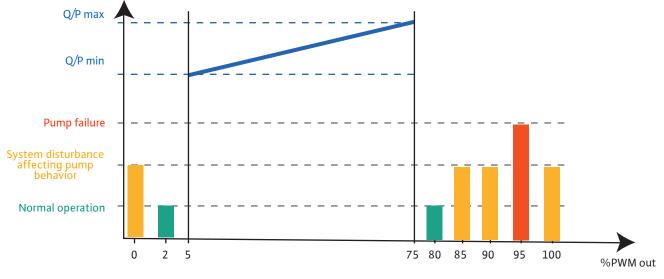


figure n°13

PWM Output signal [%]

% PWM-out	Status		
0	PWM output interface damaged		
2	Stand-by		
5-75	Pump is running, flow or power information is returned (see chapter PWM Output : product characteristics for information range supplied)		
80	Abnormal running mode Pump is running but not at optimal performance		
85-90	Abnormal function mode Pump is stopped momentarily but is still functional		
95	The pump is stopped due to permanent failure		
100	Pump power OFF or PWM output interface damaged		

Data usage

PWM Output : product characteristics

		Para (Heating) Para Z (DHW)	Para ST (Solar)	Para G (Geothermal)
Parameter	Unit	Value	Value	Value
Output of Volume Flow	%	5 to 75	5 to 75	
Para 4m	m³/h	0 to 2.1		
Para 6m	m³/h	0 to 2.1	0 to 1.4	
Para 7m	m³/h	0 to 2.1	0 to 1.4	
Para 8m	m³/h	0 to 2.1	0 to 1.4	
Para 9m	m³/h	0 to 4.5		
Para 13m	m³/h		0 to 1.4	
Output of Power Consumption	%			5 to 75
Para 7m	W			5 to 75
Para 8m	W			5 to 75
Para 9m	W			5 to 87
Indication of Invalid Data (*)				
D_INV	%	80	80	Disable
Utrig	V	190	190	
Urelease	V	195	195	

(*) When the power supply is falling down below *Utrig*, the pump is no more able to provide the accurate data estimation and then, an invalid data (*D_INV*) is returned until the voltage is exceeding *Urelease*.

PWM Output : warning / error information

PWM Warning / Error information overview

%	LED Status	Error code and name	Error type	Short description of warning consequences and/or pump actions
95%	•	Driver fault	Final error	The pump is stopped due to internal error Action: change the pump
95%	•	Missing motor, winding contact or disconnected electronic box	Final error	Could occur if the plumber disconnects the motor from electronic box or when the motor winding is damaged Action: change the pump
95%	•	Blocked rotor	Final error	The pump will try with a routine to unblock itself. Action: try to change the fluid or remove the particles blocking the pump
90%	.	Loss of synchronization	Error	Temporary situation. Motor will restart by itself
90%	.	Over current	Error	Motor current exceeding acceptable limits. Most probably temporary state
90%		Over speed	Error	Motor speed over the acceptable limits. Most probably temporary state
85%		Undervoltage	Error	Fast voltage drop : this occurs when there is a high voltage dip detected
•	Voltage drop ≤ 160 Vac		If, after the voltage drop, the voltage stays under the restart level, the motor stays stopped	
		The pump could stop, but must, after a short time, issue the assigned error code		If the voltage rises above the limit, the motor restarts by itself
		≥ 170 Vac Pump able to run and start, but possibly with limitations of performance, but not into the function The pump needs to stop status of voltage of ≥ 170 Vac to start rotation		The main voltage has the following influencing factors: kind of high or low impedance power line, tolerances of components and the operation point (main factor) Action: check the power supply stability
85%	*	Overvoltage ≥ 253 Vac The pump could stop and, if stopped, must reliably issue the assigned error code - running from 253 Vac > 265 Vac with limitation allowed without stop - if pump is stopped, it must be able to start when voltage reaches < 265 Vac	Error	The pump could stop until the voltage is back to a standard level Action: check the power supply stability

%	LED Status	Error code and name	Error type	Short description of warning consequences and/or pump actions	
85%	*	Overload motor	Error	High friction due to mechanical ageing or particles in the medium Action: try to change the fluid or remove the particles blocking the pump	
85%	*	Over temperature module	Error	Over temperature: the temperature of the electronical terminal box is too high Action: reduce the ambient temperature Pump will restart by itself when temperature is back to acceptable level	
85%	**	Generator operation	Warning	Generator operation could happen if there is another device pushing in the same direction at the pump. Action: check the installation/setup	
85%	**	Overtemperature Module	Warning	The temperature of the module is too high. This is especially applicable for pumps where Self- protection module overheat is deactivated. Pump is then running under not allowed condition	
80%	**	Overload motor	Warning	Overload motor: high friction due to mechanical ageing or particles in the medium Action: clean or change the medium	
80%	**	Undervoltage	Warning	According to hysteresis: In voltage decrease phase: 160 Vac < U < 190 Vac In voltage increase phase: 170 Vac < U < 195 Vac	
2%	*	Active stop mode	No	The pump is stopped by the PWM in signal	

PWM Warning / Error information overview

NB: The priority is defined according PWM ratio, 95% is the top priority

• Green constant 🔶 Green blinking

ereen/Red blinking

olinking 💦 🔶 Red blinking

• Red constant

PWM circulator troubleshooting

Wilo pumps are designed to provide the best efficiency all through the product's lifetime. If, however, you are facing issues, please check the below table :

PWM circulator troubleshooting overview		
Behavior	Please check how is the status LED – Root cause	Remedy
The pump is running but application doesn't reach the performances	If LED blinks green/red, the pump is still operating but not at full performance due to abnormal conditions	Check if the pump temperature is over the allowed limits Check if the power supply voltage is inside the limits (170Vac < U < 253Vac) Check if there is no external flow pushing water at the pump Check if there is no over current exceeding the limit
I plugged in my pump, applied the PWM signal and the pump is not running or the pump was running and is now stopped	If LED blinks green, the signal connection is not (or no more) working properly. Maybe the pump is driven in standby mode.	Check on the master side which PWM signal is provided. Check your installation and make sure that the PWM signal is provided to the pump Check the signal cable
	If LED blinks red, the pump is stopped due to external issue. The pump will restart automatically when conditions are ok	Check if the pump temperature is over the allowed limits Check if the power supply voltage is inside the limits (170Vac < U < 253Vac) Check if there is no external flow pushing water at the pump Check if there is no over current exceeding the limit.
	If LED is red constant, the pump is stopped due to internal "final" error	Check on the master side which PWM signal is received from the pump Switch OFF the pump, wait 30s before switching ON the pump. Then through the master side try to start the pump. If the pump LED is still red after a power reset, replace the pump

Troubleshooting

Referenced Documents

VDMA 24224 03/2014

The VDMA is a German Engineering Association

Glossary

PWM : Pulse-Width Modulation	
iPWM : Intelligent Pulse–Width Modulation	
with PWM In : from controller to circulator	
PWM Out : from circulator to controller	
OEM : Original Equipment Manufacturer	
DHW : Domestic Hot Water	

HMI : Human Machine Interface
EMC : ElectroMagnetic Compatibility
Rpm : Revolution per minute
LED : Light Emitting Diode
Vac : Alternative voltage (= RMS : Root Mean Square)

How can Wilo support you ?

Wilo can provide more support to our customers under request.

Please, contact your local sales contact or use our website: www.wilo-oem.com

wilo

Imagine you already had the solutions today that will be needed tomorrow.

With OEM Solutions, what is visionary is just a step away from reality. As the leading original equipment manufacturer, we see ourselves as part of your business and we know exactly how crucial your processes are. We work with you to develop customized innovative solutions making you a pioneer in your market. We produce these solutions for you at the time you choose, to sus-tainable, top quality. This will benefit your entire business. From senior management to purchasing. From logistics to research and development. Thanks to highly committed teamwork for your success. **OEM Solutions. Let's move. Together.**

version V1.0

Wilo Group

Strategic Business Unit OEM

Wilo Intec

50 av. Casella

F – 18700 Aubigny sur Nère

T + 33 2 48 81 62 62

www.wilo-oem.com

oem@wilo.com